Modelos no paramétricos y de regresión/Estadística II Semestre 2018-1 $no\text{-}Tarea\ 1$

- 1. En la estimación por máxima verosimilitud del modelo de regresión lineal múltiple con errores normales
 - a) Calcular la matriz Hessiana de la log-verosimilitud.
 - b) Verificar que la Hessiana evaluada en el punto $(\hat{\beta}, \hat{\sigma}^2)$, con

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$
 y $\hat{\sigma}^2 = \frac{1}{n} (\mathbf{y} - \mathbf{X} \hat{\boldsymbol{\beta}})^T (\mathbf{y} - \mathbf{X} \hat{\boldsymbol{\beta}})$,

es negativa definida.

2. Sea Z_1, \ldots, Z_n una muestra aleatoria de una distribución N(0,1). Mostrar que

$$X = \sum_{j=1}^{n} Z_j^2 \sim \chi_{(n)}^2.$$

3. Describir un algoritmo para simular observaciones de una distribución χ^2 no central con parámetro de no centralidad λ y ν grados de libertad, $\lambda, \nu > 0$. Utilizar el algoritmo anterior para comparar vía simulación, la forma de la distribución χ^2 no central para distintos valores de λ y ν .