MATH 2802 N1-N3, WORKSHEET 2

JANUARY 19TH, 2018
(1) True or False (Justify your answer)

If a system of equations has more variables than equations then it must be consistent.
(2) Let $v_{1}=\left[\begin{array}{l}12 \\ 1 \\ 2 \\ 6\end{array}\right], v_{2}=\left[\begin{array}{c}6 \\ -1 \\ 1 \\ 2\end{array}\right], v_{3}=\left[\begin{array}{c}10 \\ 1 \\ 5 \\ 10\end{array}\right], v_{4}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$ and $v_{5}=\left[\begin{array}{c}-10 \\ -1 \\ -5 \\ -10\end{array}\right]$
(a) What is the shape of $\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$?
(b) What is the shape of $\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}, v_{5}\right\}$?
(c) Is it possible to find vectors $w_{1}, w_{2}, \ldots, w_{p}$ in \mathbb{R}^{p+1} that span all \mathbb{R}^{p+1} ? (Justify your answer)
(3) Consider the following augmented matrices corresponding systems of linear equations (line separating last column missing). Find which ones are consistent, which ones have exactly one solutions; if the system has more than one solution then write down the solution set in parametric vector form.

$$
\left[\begin{array}{cccc}
1 & 4 & -4 & 3 \\
0 & 2 & 5 & 4 \\
0 & 0 & -3 & 5
\end{array}\right] \quad\left[\begin{array}{cccc}
1 & 7 & 0 & 1 \\
0 & 0 & 2 & -1 \\
0 & 0 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{cccc}
1 & 0 & 7 & 1 \\
0 & 1 & -2 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

(4) Zander has challenged you to find his hidden treasure, located at some point (a, b, c). He has honestly guaranteed you that the treasure can be found by starting at the origin and taking steps in directions given by

$$
v_{1}=\left[\begin{array}{c}
1 \\
-1 \\
-2
\end{array}\right], v_{2}=\left[\begin{array}{c}
5 \\
-4 \\
-7
\end{array}\right], v_{3}=\left[\begin{array}{c}
-3 \\
1 \\
0
\end{array}\right]
$$

By decoding Zander's message, you have discovered that the treasure's first and second entries are (in order) -4 and 3.
(a) What is the treasure's full location?
(b) Give instructions for how to find the treasure only moving in the directions given by v_{1}, v_{2}, v_{3}.

