Math 2802 N1-N3 Worksheet 4

February 2nd, 2018

1. Consider a transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$. Choose the correct answer and give examples in the follow up questions.
a) We guarantee that

- T is not onto if $m>n$.

Follow up: Provide 2 examples of $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ where i) T is onto ii) T is not onto.

- T is not onto if $m<n$.

Follow up: Provide 2 examples of $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ where i) T is onto ii) T is not onto.
b) We guarantee that

- T is not one-to-one if $m>n$.

Follow up: Provide 2 examples of $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ where i) T is one-to-one ii) T is not one-to-one.

- T is not one-to-one if $m<n$.

Follow up: Provide 2 examples of $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ where i) T is one-to-one ii) T is not one-to-one.
2. Let $A_{3}=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right)$ and $A_{4}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1\end{array}\right)$.
a) Compute the inverse of A_{3} using the algorithm from class.
b) Can you guess the inverse of A_{4} ?
c) Can you guess the inverse of the corresponding A_{n} ?
3. If we know that

$$
A=\left(\begin{array}{ccc}
5 & 2 & -1 / 2 \\
-3 / 2 & -7 / 10 & 1 / 5 \\
-1 / 2 & -1 / 10 & 1 / 10
\end{array}\right) \quad \text { and } \quad A^{-1}=\left(\begin{array}{ccc}
1 & 3 & -1 \\
-1 & -5 & 5 \\
4 & 10 & 10
\end{array}\right)
$$

Solve the system $A x=\left(\begin{array}{c}1 \\ 0 \\ -3\end{array}\right)$.
4. Exercise 31 from section 2.5 For this problem, use the interactive row reducer to row reduce the matrix A (MATHLAB might use a permutated lower triangular matrix): http://people.math.gatech.edu/~jrabinoff6/1718F-1553/demos/ rrinter.html

