Section 6.5

Least Squares Problems

Motivation

Problem

Suppose that Ax = b does not have a solution. What is the *best possible approximate* solution?

Saying Ax = b has no solution means that b is not in Col A.

- ▶ Using $\hat{b} = \text{proj}_{Col A}(b)$, then $A\hat{x} = \hat{b}$ is a consistent equation.
- ▶ Plus: \hat{b} is the *closest vector to b* such that $A\hat{x} = \hat{b}$ is consistent.

Solution

A solution \hat{x} to $A\hat{x} = \hat{b}$ is a least squares solution.

Least Squares Solutions

Definition

Let A be an $m \times n$ matrix. A **least squares solution** to Ax = b is a vector \hat{x} in \mathbb{R}^n such that

$$A\widehat{x} = \widehat{b} = \operatorname{proj}_{\operatorname{Col} A}(b).$$

A least squares solution \hat{x} solves Ax = b as closely as possible.

In *distance terms*, for all x in \mathbb{R}^n :

$$||b - A\widehat{x}|| \le ||b - Ax||$$

Least Squares Solutions: Orthogonal case

Theorem

Let A be a $m \times n$ matrix with **orthogonal columns** v_1, v_2, \dots, v_n . The least squares solution to Ax = b is the vector

$$\widehat{x} = \left(\frac{b \cdot v_1}{v_1 \cdot v_1}, \ \frac{b \cdot v_2}{v_2 \cdot v_2}, \ \cdots, \ \frac{b \cdot v_n}{v_n \cdot v_n}\right).$$

This is because we have formulas for the \mathcal{B} -coordinates of orthogonal basis:

$$A\widehat{x} = \sum_{i=1}^{n} \frac{b \cdot v_i}{v_i \cdot v_i} v_i = \operatorname{proj}_{\mathsf{Col}\,A}(b)$$

Least Squares Solutions: General Solution

Theorem

Let A be a $m \times n$ matrix. Least squares solutions to Ax = b are any of the solutions to

$$(A^TA)\widehat{x} = A^Tb.$$

Now we can solve the problem without computing \hat{b} first.

This is just another sysmtem of equations, but now it is consistent and uses square matrix $A^{T}A!$

Why is this true?

Recall: $(\operatorname{Col} A)^{\perp} = \operatorname{Nul}(A^{T})$. Now, $b - A\widehat{x}$ is in $(\operatorname{Col} A)^{\perp}$ if and only if

$$A^{T}(b-A\widehat{x})=0.$$

In other words, $A^T A \widehat{x} = A^T b$.

Find the least squares solutions to Ax = b where:

$$A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{pmatrix} \qquad b = \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix}.$$

First: Compute new matrix and vector

$$\mathbf{A}^{\mathsf{T}}\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 3 & 3 \\ 3 & 5 \end{pmatrix}$$

and

$$A^{\mathsf{T}}b = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 6 \\ 0 \end{pmatrix}.$$

Second: Solve the new system; row reduce:

$$\begin{pmatrix} 3 & 3 & | & 6 \\ 3 & 5 & | & 0 \end{pmatrix} \xrightarrow{\text{vvvv}} \begin{pmatrix} 1 & 0 & | & 5 \\ 0 & 1 & | & -3 \end{pmatrix}.$$

So the *unique* least squares *solution* is
$$\hat{x} = \begin{pmatrix} 5 \\ -3 \end{pmatrix}$$
.

Find the least squares solutions to Ax = b where:

$$A = \begin{pmatrix} 2 & 0 \\ -1 & 1 \\ 0 & 2 \end{pmatrix} \qquad b = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}.$$

First: Compute new matrix and vector

$$A^{T}A = \begin{pmatrix} 2 & -1 & 0 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ -1 & 1 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 5 & -1 \\ -1 & 5 \end{pmatrix}$$

and

$$A^{\mathsf{T}}b = \begin{pmatrix} 2 & -1 & 0 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \end{pmatrix}.$$

Second: Solve the new system; row reduce:

$$\begin{pmatrix} 5 & -1 & 2 \\ -1 & 5 & -2 \end{pmatrix} \xrightarrow[]{} \stackrel{2}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & 1/3 \\ 0 & 1 & -1/3 \end{pmatrix}.$$

So the *unique* least squares *solution is*
$$\widehat{x} = \begin{pmatrix} 1/3 \\ -1/3 \end{pmatrix}$$
.

Poll

What is the *error in the least-squares* solution \widehat{x} for Ax = b?

- 1. ||Ax b||
- $2. ||A\widehat{x}-b||$
- 3. $||\widehat{b} b||$
- $4. ||x \widehat{x}||$

Solution: Both b) and c); the two expressions are equivalent.

Least Squares Solutions: Uniqueness

When does Ax = b have a *unique* least squares solution \hat{x} ?

 $ightharpoonup A^T A$ is always a square matrix, but it need not be invertible.

Theorem

Let A be an $m \times n$ matrix. The following are equivalent:

- 1. $A^T A$ is invertible.
- 2. The columns of A are linearly independent.
- 3. Ax = b has a unique least squares solution for all b in \mathbb{R}^n , which is

$$(A^TA)^{-1}(A^Tb).$$

▶ If the columns of A are *linearly dependent*, then $A\widehat{x} = \widehat{b}$ has many solutions.

From Example 1

$$\widehat{Ax} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 5 \\ -3 \end{pmatrix} = \begin{pmatrix} 5 \\ 2 \\ -1 \end{pmatrix} = \widehat{b}$$

1. The solution \hat{x} makes the distance from b to its approximation:

$$\begin{aligned} \|b - A\widehat{x}\| &= \left\| \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 5 \\ 2 \\ -1 \end{pmatrix} \right\| \\ &= \left\| \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \right\| = \sqrt{6}. \end{aligned}$$

2. If A^TA is invertible: Let v_1, v_2 be the columns of A, and $\mathcal{B} = \{v_1, v_2\}$, then $\widehat{x} = \binom{5}{-3}$ are the \mathcal{B} -coordinates of \widehat{b} , in Col $A = \text{Span}\{v_1, v_2\}$.