Section 6.5

Least Squares Problems

Motivation

Problem

Suppose that $A x=b$ does not have a solution. What is the best possible approximate solution?

Saying $A x=b$ has no solution means that b is not in $\operatorname{Col} A$.

- Using $\widehat{b}=\operatorname{proj}_{\text {Col } A}(b)$, then $A \widehat{x}=\widehat{b}$ is a consistent equation.
- Plus: \widehat{b} is the closest vector to b such that $A \widehat{x}=\widehat{b}$ is consistent.

Solution

A solution \widehat{x} to $A \widehat{x}=\widehat{b}$ is a least squares solution.

Least Squares Solutions

Definition

Let A be an $m \times n$ matrix. A least squares solution to $A x=b$ is a vector \widehat{x} in \mathbf{R}^{n} such that

$$
A \widehat{x}=\widehat{b}=\operatorname{proj}_{C o l} A(b)
$$

A least squares solution \widehat{x} solves $A x=b$ as closely as possible.

Note that $b-A \widehat{x}$ is in $(\operatorname{Col} A)^{\perp}$.

In distance terms, for all x in \mathbf{R}^{n} :

$$
\|b-A \widehat{x}\| \leq\|b-A x\|
$$

Least Squares Solutions: Orthogonal case

Theorem

Let A be a $m \times n$ matrix with orthogonal columns $v_{1}, v_{2}, \ldots, v_{n}$. The least squares solution to $A x=b$ is the vector

$$
\widehat{x}=\left(\frac{b \cdot v_{1}}{v_{1} \cdot v_{1}}, \frac{b \cdot v_{2}}{v_{2} \cdot v_{2}}, \cdots, \frac{b \cdot v_{n}}{v_{n} \cdot v_{n}}\right) .
$$

This is because we have formulas for the \mathcal{B}-coordinates of orthogonal basis:

$$
A \widehat{x}=\sum_{i=1}^{n} \frac{b \cdot v_{i}}{v_{i} \cdot v_{i}} v_{i}=\operatorname{proj}_{C o 1 A}(b)
$$

$$
A \widehat{x}=\widehat{b}=\operatorname{proj}_{C o l} A(b)
$$

Least Squares Solutions: General Solution

Theorem
Let A be a $m \times n$ matrix. Least squares solutions to $A x=b$ are any of the solutions to

$$
\left(A^{T} A\right) \widehat{x}=A^{T} b
$$

Now we can solve the problem without computing \widehat{b} first.

This is just another sysmtem of equations, but now it is consistent and uses square matrix $A^{\top} A$!

Why is this true?

Recall: $(\operatorname{Col} A)^{\perp}=\operatorname{Nul}\left(A^{T}\right)$.
Now, $b-A \widehat{x}$ is in $(\operatorname{Col} A)^{\perp}$ if and only if

$$
A^{T}(b-A \widehat{x})=0
$$

In other words, $A^{T} A \widehat{x}=A^{T} b$.

Least Squares Solutions

Example 1

Find the least squares solutions to $A x=b$ where:

$$
A=\left(\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right) \quad b=\left(\begin{array}{l}
6 \\
0 \\
0
\end{array}\right)
$$

First: Compute new matrix and vector

$$
A^{\top} A=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right)=\left(\begin{array}{ll}
3 & 3 \\
3 & 5
\end{array}\right)
$$

and

$$
A^{\top} b=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right)\left(\begin{array}{l}
6 \\
0 \\
0
\end{array}\right)=\binom{6}{0}
$$

Second: Solve the new system; row reduce:

$$
\left(\begin{array}{ll|l}
3 & 3 & 6 \\
3 & 5 & 0
\end{array}\right) \text { an> }\left(\begin{array}{ll|r}
1 & 0 & 5 \\
0 & 1 & -3
\end{array}\right) .
$$

So the unique least squares solution is $\widehat{x}=\binom{5}{-3}$.

Least Squares Solutions

Example 2

Find the least squares solutions to $A x=b$ where:

$$
A=\left(\begin{array}{rr}
2 & 0 \\
-1 & 1 \\
0 & 2
\end{array}\right) \quad b=\left(\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right)
$$

First: Compute new matrix and vector

$$
A^{T} A=\left(\begin{array}{rrr}
2 & -1 & 0 \\
0 & 1 & 2
\end{array}\right)\left(\begin{array}{rr}
2 & 0 \\
-1 & 1 \\
0 & 2
\end{array}\right)=\left(\begin{array}{rr}
5 & -1 \\
-1 & 5
\end{array}\right)
$$

and

$$
A^{T} b=\left(\begin{array}{rrr}
2 & -1 & 0 \\
0 & 1 & 2
\end{array}\right)\left(\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right)=\binom{2}{-2} .
$$

Second: Solve the new system; row reduce:

$$
\left(\begin{array}{rr|r}
5 & -1 & 2 \\
-1 & 5 & -2
\end{array}\right) \text { ans }\left(\begin{array}{rr|r}
1 & 0 & 1 / 3 \\
0 & 1 & -1 / 3
\end{array}\right) .
$$

So the unique least squares solution is $\widehat{x}=\binom{1 / 3}{-1 / 3}$.

Poll

$$
\begin{aligned}
& \text { Poll } \\
& \text { What is the error in the least-squares solution } \widehat{x} \text { for } A x=b \text { ? } \\
& \text { 1. }\|A x-b\| \\
& \text { 2. }\|A \widehat{x}-b\| \\
& \text { 3. }\|\widehat{b}-b\| \\
& \text { 4. }\|x-\widehat{x}\|
\end{aligned}
$$

Solution: Both b) and c); the two expressions are equivalent.

Least Squares Solutions: Uniqueness

When does $A x=b$ have a unique least squares solution \widehat{x} ?

- $A^{T} A$ is always a square matrix, but it need not be invertible.

Theorem
Let A be an $m \times n$ matrix. The following are equivalent:

1. $A^{T} A$ is invertible.
2. The columns of A are linearly independent.
3. $A x=b$ has a unique least squares solution for all b in \mathbf{R}^{n}, which is

$$
\left(A^{T} A\right)^{-1}\left(A^{T} b\right)
$$

- If the columns of A are linearly dependent, then $A \widehat{x}=\widehat{b}$ has many solutions.

Extra: More details

From Example 1

$$
A \widehat{x}=\left(\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right)\binom{5}{-3}=\left(\begin{array}{c}
5 \\
2 \\
-1
\end{array}\right)=\widehat{b}
$$

1. The solution \widehat{x} makes the distance from b to its approximation:

$$
\begin{aligned}
\|b-A \widehat{x}\| & =\left\|\left(\begin{array}{l}
6 \\
0 \\
0
\end{array}\right)-\left(\begin{array}{c}
5 \\
2 \\
-1
\end{array}\right)\right\| \\
& =\left\|\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right)\right\|=\sqrt{6}
\end{aligned}
$$

2. If $A^{T} A$ is invertible: Let v_{1}, v_{2} be the columns of A, and $\mathcal{B}=\left\{v_{1}, v_{2}\right\}$, then $\widehat{x}=\binom{5}{-3}$ are the \mathcal{B}-coordinates of \widehat{b}, in $\operatorname{Col} A=\operatorname{Span}\left\{v_{1}, v_{2}\right\}$.

