Section 7.1

Diagonalization of symmetric matrices

Motivation: Diagonalization

How did we recognize diagonalizable matrices?

- They are already diagonal
- They have n distinct eigenvalues Quick to check: only if matrix is triangular
- The algebraic and geometric multiplicities are equal for all eigenvalues and they sum up to n.

New criterion: Verify if matrix is symmetric!

- Symmetric, e.g. $\left(\begin{array}{ll}3 & 1 \\ 1 & 2\end{array}\right)$
- Not symmetric, e.g. $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right),\left(\begin{array}{ccc}1 & -4 & 0 \\ 6 & 1 & -4 \\ 0 & 6 & 1\end{array}\right)$

Warm up: $u^{T} u$ vs $u u^{T}$

If u is a vector in \mathbf{R}^{n} with entries $u^{T}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$, then

- $u^{T} u=u_{1}^{2}+u_{2}^{2}+\cdots u_{n}^{2}$ is a scalar.
- $u u^{T}$ is an $n \times n$ matrix:

$$
u u^{T}=\left(\begin{array}{cccc}
u_{1} u_{1} & u_{1} u_{2} & \cdots & u_{1} u_{n} \\
u_{2} u_{1} & u_{2} u_{2} & \cdots & u_{2} u_{n} \\
\vdots & \vdots & \ddots & \vdots \\
u_{n} u_{1} & u_{n} u_{2} & \cdots & u_{n} u_{n}
\end{array}\right)
$$

A projection matrix!
In fact, $u u^{T}$ is the standard matrix for the transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ that projects onto the line spanned by u.

Warm up: Inverse of an orthonormal matrix

For orthogonal matrices Q, with column vectors $u_{1}, u_{2}, \ldots, u_{n}$ we already know that

$$
Q^{T} Q=\left(\begin{array}{cccc}
u_{1} \cdot u_{1} & 0 & \cdots & 0 \\
0 & u_{2} \cdot u_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \vdots & u_{n} \cdot u_{n}
\end{array}\right)
$$

so for orthonormal matrices Q

$$
Q^{T} Q=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \vdots & 1
\end{array}\right)
$$

What is the inverse of Q ?

Orthogonally diagonalizable

Definition
 An $n \times n$ matrix A is orthogonally diagonalizable if $A=P D P^{-1}$ with D diagonal matrix and P an orthonormal matrix.

To stress the orthogonality of P we write $A=P D P^{T}$.

Avoiding errors
Computations using orthogonal matrices usually prevents numerical errors from accumulating.

Collection of eigenvalues $=$ 'Spectral'

Spectral decomposition
If D has diagonal entries $\lambda_{1}, \ldots, \lambda_{n}$ and P has columns u_{1}, \ldots, u_{n} then

$$
A=\lambda_{1} u_{1} u_{1}^{T}+\lambda_{2} u_{2} u_{2}^{T}+\cdots+\lambda_{n} u_{n} u_{n}^{T}
$$

- Fancy way of expressing the change of variables and
- the fact that principal axes are only stretch/contracted
- Each of $u_{i} u_{i}^{T}$ is a projection matrix!

Why? We have to name each entry of the vectors u_{1}, \ldots, u_{n}.

1. Say $u_{k}^{T}=\left(u_{k 1}, u_{k 2}, \ldots u_{k n}\right)$.
2. Start with a simple case: $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{n}=1$

- Compare the (i, j)-th entry of $u_{k} u_{k}^{T}: \quad u_{k i} u_{k j}$
- with the (i, j)-th entry of $P P^{T}: \sum_{k=1}^{n} u_{k i} u_{k j}$

3. Challenge: If the λ 's are different, how the entries of $P D P^{T}$ change?

Poll

Paper-based Poll

In a piece of paper with your name, hand to the instructor:
If $P=\left(\begin{array}{llll}u_{11} & u_{21} & u_{31} & u_{41} \\ u_{12} & u_{22} & u_{32} & u_{42} \\ u_{13} & u_{23} & u_{33} & u_{43} \\ u_{14} & u_{24} & u_{34} & u_{44}\end{array}\right)$
Write down P^{T} and compute

- the $(2,3)$-th entry of $P P^{T}$
- the (2, 3)-th entry of $\left(\begin{array}{l}u_{11} \\ u_{12} \\ u_{13} \\ u_{14}\end{array}\right)\left(\begin{array}{llll}u_{11} & u_{12} & u_{13} & u_{14}\end{array}\right)$
- the (2,3)-th entry of $\left(\begin{array}{l}u_{21} \\ u_{22} \\ u_{23} \\ u_{24}\end{array}\right)\left(\begin{array}{llll}u_{21} & u_{22} & u_{23} & u_{24}\end{array}\right)$

Example: Orthogonally diagonalizable

Example

Orthogonally diagonalize the matrix $A=\left(\begin{array}{ccc}3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3\end{array}\right)$
its charactheristic equation is $-(\lambda-7)^{2}(\lambda+2)=0$.
Find a basis for each λ-eigenspace:

$$
\text { For } \lambda=7:\left\{\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{c}
-1 / 2 \\
1 \\
0
\end{array}\right)\right\} \quad \text { For } \lambda=-2:\left\{\left(\begin{array}{c}
-1 \\
-1 / 2 \\
1
\end{array}\right)\right\}
$$

A suitable P
Is the set of eigenvectors above already orthogonal? orthonormal?

$$
A=P\left(\begin{array}{ccc}
7 & 0 & 0 \\
0 & 7 & 0 \\
0 & 0 & -2
\end{array}\right) P^{-1}
$$

Example: Orthogonally diagonalizable

Verify:

- $v_{3}=\left(\begin{array}{c}-1 \\ -1 / 2 \\ 1\end{array}\right)$ is already orthogonal to $v_{1}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$ and $v_{2}=\left(\begin{array}{c}-1 / 2 \\ 1 \\ 0\end{array}\right)$
- but $v_{1} \cdot v_{2} \neq 0$.

Tackle this: Use Gram-Schmidt

$$
\begin{aligned}
& u_{1}=v_{1} \\
& u_{2}=v_{2}-\frac{v_{2} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}=\left(\begin{array}{c}
-1 / 2 \\
1 \\
0
\end{array}\right)-\frac{-1 / 2}{2}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
-1 / 4 \\
1 \\
1 / 4
\end{array}\right)
\end{aligned}
$$

And $u_{3}=v_{3}$. Then normalize!

$$
P=\left(\begin{array}{ccc}
1 / \sqrt{2} & -1 \sqrt{18} & -2 / 3 \\
0 & 4 \sqrt{18} & -1 / 3 \\
1 / \sqrt{2} & 1 \sqrt{18} & 2 / 3
\end{array}\right), \quad D=\left(\begin{array}{ccc}
7 & 0 & 0 \\
0 & 7 & 0 \\
0 & 0 & -2
\end{array}\right)
$$

Example: Spectral Decomposition

Example

Construct a spectral decomposition of the matrix A with orthogonal diagonalization

$$
A=\left(\begin{array}{ll}
7 & 2 \\
2 & 4
\end{array}\right)=\left(\begin{array}{cc}
2 / \sqrt{5} & -1 / \sqrt{5} \\
1 / \sqrt{5} & 2 / \sqrt{5}
\end{array}\right)\left(\begin{array}{cc}
8 & 0 \\
0 & 3
\end{array}\right)\left(\begin{array}{cc}
2 / \sqrt{5} & 1 / \sqrt{5} \\
-1 / \sqrt{5} & 2 / \sqrt{5}
\end{array}\right)
$$

Solution: Then $A=8 u_{1} u_{1}^{T}+3 u_{2} u_{2}^{T}$, each matrix is

$$
\begin{aligned}
u_{1} u_{1}^{T} & =\left(\begin{array}{cc}
4 / 5 & 2 / 5 \\
2 / 5 & 1 / 5
\end{array}\right) \\
u_{2} u_{2}^{T} & =\left(\begin{array}{cc}
1 / 5 & -2 / 5 \\
-2 / 5 & 4 / 5
\end{array}\right)
\end{aligned}
$$

Check: $8 u_{1} u_{1}^{T}+3 u_{2} u_{2}^{T}=\left(\begin{array}{cc}32 / 5 & 16 / 5 \\ 16 / 5 & 8 / 5\end{array}\right)+\left(\begin{array}{cc}3 / 5 & -6 / 5 \\ -6 / 5 & 12 / 5\end{array}\right)=A$

Symmetric matrices

Definition

An $n \times n$ matrix is symmetric if $A=A^{T}$.

Theorem

An $n \times n$ matrix A is orthogonally diagonalizable if and only if A is symmetric.

The easy observation: Let $A=P D P^{T}$ with D diagonal and P orthonormal.
Just check A is symmetric, that is $A=A^{T}$:

$$
(\underbrace{P D P^{T}}_{A})=\left(P^{T}\right)^{T} D^{T} P^{T}=\underbrace{P D P^{T}}_{A}
$$

The difficult part (omitted here) is: if $A=A^{T}$ then an orthogonal diagonalization do exists.

Summary

Spectral Theorem for Symmetric matrices
An $n \times n$ symmetric matrix A has the following properties.

- A has n real eigenvalues, counting multiplicities
- For each eigenvalue, the dimension of the λ-eigenspaces equal the algebraic multiplicity.
- The eigenspaces are mutually orthogona!! eigenvectors corresponding to different eigenvalues are orthogonal.
- A is orthogonally diagonalizable.

Extra: Eigenspaces are mutually orthogonal

Symmetric matrices only
Eigenspaces are mutually orthogonal

What does it mean?

If v_{1} and v_{2} are eixgenvectors that correspond to distinct eigenvalues λ_{1} and λ_{2}

$$
\text { then } v_{1} \cdot v_{2}=0
$$

Trick to see this: Find a way to show that $\left(\lambda_{1}-\lambda_{2}\right) v_{1} \cdot v_{2}=0$.

Why? We assumed that $\lambda_{1} \neq \lambda_{2}$ so necessarily $v_{1} \cdot v_{2}=0$.
Hint: Compute $v_{1}^{T} A v_{2}$ in two different 'orders'

- Symmetry is important: You'll have to sustitute $A=A^{T}$ at some point.

