# Section 7.2

Quadratic Forms

The following functions are *not linear* 

• 
$$f(x_1, x_2) = x_1^2 + 2x_2x_3$$

• 
$$g(x_1, x_2) = x_1^2 + x_2^2$$

but they have 'dot-product' expressions:

$$g(x) = x^{\mathsf{T}} x = x^{\mathsf{T}} I x$$

And in general,  $x^T A x$ 

- gets you a scalar,
- is a sum that includes '*cross-product*' terms  $a_{x_ix_i}$

# **Quadratic Forms**

#### Definition

A quadratic form on  $\mathbb{R}^n$  is a function  $Q : \mathbb{R}^n \to \mathbb{R}$  that can be expressed as  $Q(x) = x^T A x$  where A is an  $n \times n$  symmetric matrix.

Example If 
$$A = \begin{pmatrix} 4 & 0 \\ 0 & 3 \end{pmatrix}$$
 then 
$$Q(x) = 4x_1^2 + 3x_2^2$$

Example  
If 
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
 then

$$Q(x) = x_1^2 + 2x_2x_3$$

Example Let  $Q(x) = 5x_1^2 + 3x_2^2 + 2x_3^2 - 4x_1x_2 + 8x_2x_3$ 

Find the *matrix of the quadratic form*.

#### A must be symmetric:

- The coefficients of  $x_i^2$  go on the diagonal of A,
- (i, j)-th and (j, i)-th entries are equal and sum up to the coefficient of  $x_i x_j$ .

Then

$$A = \begin{pmatrix} 5 & -2 & 0 \\ -2 & 3 & 4 \\ 0 & 4 & 2 \end{pmatrix}$$

A consequence of the spectral theorem for symmetric matrices

The principal axes theorem Let A be  $n \times n$  symmetric matrix. Then there is an **orthogonal change of variable** x = Py that transforms the quadratic form  $x^T A x$  into a quadratic form  $y^T D y$  with no cross-product terms.

If 
$$A = PDP^{-1}$$
 with  $P^T = P^{-1}$  and  $D$  diagonal,

then

$$x^{T}Ax = \underbrace{x^{T}P}_{y^{T}} D \underbrace{P^{-1}x}_{y}$$



FIGURE 1 Change of variable in x<sup>T</sup>Ax.

A consequence of the spectral theorem for symmetric matrices

```
The principal axes theorem
Let A be n \times n symmetric matrix.
Then there is an orthogonal change of variable x = Py that transforms
the quadratic form x^T A x into a quadratic form
y^T Dy with no cross-product terms.
```

- Columns of *P* are: **Principal axes**
- The vector y is the coordinate vector of x

relative to the basis formed by the principal axes

## Example

Make a change of variables that transforms the quadratic form

$$Q(x_1, x_2) = x_1^2 - 5x_2^2 - 8x_1x_2$$

into a quadratic form with no cross-product terms

General Formula: there is an orthonormal matrix P such that

$$A = P \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} P^T$$

the change of variables is given by  $y = P^T x = P^{-1} x$ .

In this case, First 
$$A = \begin{pmatrix} 1 & -4 \\ -4 & 5 \end{pmatrix}$$
,  $\lambda_1 = 3, \lambda_2 = -7$  and  $P = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}$   
Then

$$y^{T} \begin{pmatrix} 3 & 0 \\ 0 & -7 \end{pmatrix} y = 3y_1^2 - 7y_2^2$$

## Geometric view: Contour curves

If  $Q(x) = \frac{x_1^2}{a^2} + \frac{x_2^2}{b^2}$  then draw all points x for which Q(x) = 1.





#### To find *principal axes*, change variables

#### Standard position

## Geometric view: Contour curves

If  $Q(x) = \frac{x_1^2}{a^2} - \frac{x_2^2}{b^2}$  then draw all points x for which Q(x) = 1.







#### Standard position

## Classify quadratic forms

## A quadratic form is

- Indefinite: if Q(x) assumes both positive and negative values
- Positive definite: if Q(x) > 0 for all  $x \neq 0$ ,
- Negative definite: if Q(x) < 0 for all  $x \neq 0$ ,

The prefix *semi* means e.g.  $Q(x) \ge 0$  for all  $x \ne 0$ .

Eigenvalues

You can classify quadratic from knowing its eigenvalues (evaluate on principal axes)

e.g. Positive definite forms have *all eigenvalues* positive.





Only d) is indefinite, since b) does not take negative values, it is not indefinite. The prefix semi means e.g.  $Q(x) \ge 0$  for all  $x \ne 0$ .

False impression

All entries of A are positive, doesn't imply A is positive definite!

#### Example

Find a vector x such that colorolive 
$$Q(x) = x^T A x < 0$$
, for  $A = \begin{pmatrix} 3 & 2 & 0 \\ 2 & 2 & 2 \\ 0 & 2 & 1 \end{pmatrix}$ 

Solution: The eigenvalues of A are 5, 2, -1. Finding eigenvector for each eigenvalue = finding the principal axes of Q(x). The orthonormal matrix is

$$P = \frac{1}{3} \begin{pmatrix} 2 & -2 & 1\\ 2 & 1 & -2\\ 1 & 2 & 2 \end{pmatrix}.$$

The vector for axis with eigenvalue -1 has Q(x) = -1; this is

$$v = \frac{1}{3} \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}.$$

# Extra: All possible contour curves



| Positive Def. | Negative<br>Semidef. | Indefinite                   | Negative Def. |
|---------------|----------------------|------------------------------|---------------|
| Ellipses      | Parallel lines       | Hyperbolas                   | Empty         |
| A point       | A line               | Two inters. lines            | A point       |
| Empty         | Empty                | Hyperbolas (Axes<br>flipped) | Ellipses      |