Announcements

Exams and assignments

- Midterm 3: Friday 13th, 3:00-3:50

Sections 6.1-6.6 and 7.1-7.2

- Optional assignment: Friday 20th, midnight Due by email: laura.eslava@math.gatech.edu
- Final Exam: Thursdday 26th, 2:50-5:40 (This lecture room)

Comprehensive, all sections covered in class

Section N3

- Quiz missed will have next quiz's grade copied.
- TA for last weeks: Andrew Fu
- Office Hours: Skiles 230

Thursday 12th: 1:30-4:00 pm
Thursday 19th: 2:00-4:00 pm

Section 7.3

Constrained Optimization

Motivation: How to allocate resources

Problem: The government wants to repair

- w_{1} hundred miles of public roads
- w_{2} hundred acres of parks

Resources are limited, so cannot work on more than

- 3 miles of roads or
- 2 acres of park;
- general condition is:

$$
4 w_{1}^{2}+9 w_{2}^{2} \leq 36
$$

How to allocate resources?
Utility function: Considering overall benefits, want to maximize

$$
q\left(w_{1}, w_{2}\right)=w_{1} w_{2}
$$

(i.e.Do not focus solely on roads nor parks)

How would you maximize utility $q\left(w_{1}, w_{2}\right)$?

Constrained Optimization

Optimization problems
Maximize (or minimize) the value of a given function.

- This a broad and important area,
- here we only focus on quadratic functions.

Example

What is the maximum value possible for

- $Q(x)=3 x_{1}^{2}+3 x_{2}^{2}$?
under the constraint $\|x\|^{2}=1$
- $Q(x)=3 x_{1}^{2}+7 x_{2}^{2}$?
under the constraint $\|x\|^{2}=1$

FIGURE $1 z=3 x_{1}^{2}+7 x_{2}^{2}$.

The constraint in these optimization problems

We will keep the restriction that vectors x in \mathbf{R}^{n} have unit length;

$$
\|x\|=1, \quad x \cdot x=1 \quad x^{\top} x=1
$$

or more commonly used: $x_{1}^{2}+x_{2}^{2}+\cdots x_{n}^{2}$.

Example
 $Q(x)=3 x_{1}^{2}+7 x_{2}^{2}$

Plot this function in 3-dimension as:

$$
\left(\begin{array}{c}
x_{1} \\
x_{2} \\
Q(x)
\end{array}\right)
$$

FIGURE 2 The intersection of $z=$
$3 x_{1}^{2}+7 x_{2}^{2}$ and the cylinder $x_{1}^{2}+x_{2}^{2}=1$.

The constrained optimization problem
Given a quadratic form $Q(x)$, restricted to unit vectors, What is the maximum and minimum values of $Q(x)$, which vectors attain such extremes?

An easy case: no cross-product

Example

If $Q(x)=3 x_{1}^{2}+7 x_{2}^{2}$, and constraint is $x^{\top} x=1$.

- What are the maximum and minimum values of $Q(x)$,
- which vectors attain such values?

The constraint means $x_{1}^{2}+x_{2}^{2}=1$, so for any such vector x :

- $Q(x)=3 x_{1}^{2}+7 x_{2}^{2} \leq 7 x_{1}^{2}+7 x_{2}^{2} \leq 7\left(x_{1}^{2}+x_{2}^{2}\right)=7$

$$
\text { attained by vectors } \pm\binom{ 0}{1}
$$

- $Q(x)=3 x_{1}^{2}+7 x_{2}^{2} \geq 3 x_{1}^{2}+3 x_{2}^{2} \geq 3\left(x_{1}^{2}+x_{2}^{2}\right)=3$

$$
\text { attained by vectors } \pm\binom{ 1}{0}
$$

Another easy case: no cross-product

Example

If $Q(x)=2 x_{1}^{2}+4 x_{2}^{2}+x^{3}$, and constraint is $x^{T} x=1$.

- What are the maximum and minimum values of $Q(x)$,
- which vectors attain such values?

The associated matrix is $A=\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1\end{array}\right)$ with eigenvalues $1,2,4$.

- The maximum value is 4 , attained by $\pm\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$
- The minimum value is 1 , attained by $\pm\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$

Eigenvalues

Answer seems: The largest and smallest eigenvalues (and eigenvectors) of A. How does it work in general?

The Constrained Optimization theorem

Theorem

Let A be a symmetric matrix and $Q(x)=x^{T} A x$ a quadratic function

- Maximum: the maximum value of $Q(x)$ subject to $x^{\top} x=1$ equals the largest eigenvalue M of A.
This maximum is attained by an eigenvector of A corresponding to M.
- Minimum: the minimum value of $Q(x)$ subject to $x^{T} x=1$ equals the smallest eigenvalue m of A.
This minimum is attained by an eigenvector of A corresponding to m.

How to use this information? To find maximum/minimum values of $Q(x)$, under restriction $x^{\top} x=1$:

- Find the eigenvalues of A, list them in decreasing order $\lambda_{1} \geq \lambda_{2} \geq \cdots \lambda_{n}$.
- Then maximum is $M=\lambda_{1}$ and minimum is $m=\lambda_{n}$.

Why it works for all quadratic functions?

From Section 7.2

Recall all quadratic functions $Q(x)$ have

- A symmetric matrix associated A,
- An orthogonal diagonalization for $A=P D P^{T}$,
- Form is equivalent to $\widehat{Q}(y)=\lambda_{1} y_{1}^{2}+\lambda_{2} y_{2}^{2}+\cdots \lambda_{n} y_{n}^{2}$, under a suitable change of variables $x=P y$

The problem for $\widehat{Q}(y)$: Maximum is largest of λ_{i} 's, say λ_{1}. Then vector attaining maximum is e_{1}.

The problem for $Q(x)$: can use $\widehat{Q}(y)$ because P orthonormal!
The maximum is $\widehat{Q}\left(e_{1}\right)=Q\left(P e_{1}\right)=\lambda_{1}$ attained by $P e_{1}$ (first column of $\left.P\right)$.

Example

Example

What is the maximum value of $Q(x)=x^{T} A x$ subject to $x^{T} x=1$,
$A=\left(\begin{array}{lll}3 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 4\end{array}\right)$.

For maximum value: compute the characteristic equation of A

$$
\operatorname{det}(A-\lambda I)=0=(\lambda-6)(\lambda-3)(\lambda-1) .
$$

Then the maximum value is 6 .

For unit vector attaining $Q(x)=6$: Find eigenvector of A corresponding to 6 , and normalize it!

Get both using a decompostion of A...

Have access to orthogonal diagonalization?

Example

What is the vector attaining the maximum value of $Q(x)=x^{T} A x$ subject to $x^{T} x=1, A=\left(\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right)$.

If you have the orthogonal diagonalization of A :

$$
\left(\begin{array}{cc}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right)\left(\begin{array}{ll}
4 & 0 \\
0 & 2
\end{array}\right)\left(\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
-1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right)
$$

- The maximum value is 4
- and the vectors attaining such value are $\pm\binom{ 1 / \sqrt{2}}{1 / \sqrt{2}}$

The maximum value of $Q(\mathbf{x})$ subject to $\mathbf{x}^{T} \mathbf{x}=1$ is 4 .

Additional constraints

Other eigenvalues/eigenvectors

Let A be a symmetric matrix. Let $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$ be the eigenvalues of A listed in decreasing order.
Let $A=P D P^{T}$ be an orthogonal diagonalization where diagonal entries in D are $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ and columns in P are $u_{1}, u_{2}, \ldots, u_{n}$.

- The maximum value of $x^{T} A x$ subject to the constraints

$$
x^{T} x=1 \quad \text { and } \quad x^{T} u_{1}=0
$$

is the second largest eigenvalue λ_{2}, attained by $\pm u_{2}$.

- The maximum value of $x^{T} A x$ subject to the constraints

$$
x^{T} x=1 \quad \text { and } \quad x^{T} u_{1}=0, \quad x^{T} u_{2}=0
$$

is the third largest eigenvalue λ_{3}, attained by $\pm u_{3}$.

- Can you see a pattern?

Back to the application: setup problem

Problem: The government wants to repair w_{1} hundred miles of public roads and w_{2} hundred acres of parks.

1. Maximize work done! constrain to $4 w_{1}+9 w_{2}=36$

FIGURE 4 The optimum public works schedule is $(2.1,1.4)$.
2. Fit to quadratic optimization template (additional change of variables)

$$
x_{1}=\frac{w_{1}}{3} \quad x_{2}=\frac{w_{2}}{2}, \quad \text { new constraint: } x_{1}^{2}+x_{2}^{2}=1
$$

3. New utility function: subject to $x_{1}^{2}+x_{2}^{2}=1$, maximize

$$
Q\left(x_{1}, x_{2}\right)=\left(3 x_{1}\right)\left(2 x_{2}\right)=6 x_{1} x_{2} .
$$

Back to the application: interpretation

The associated matrix A to $Q\left(x_{1}, x_{2}\right)=6 x_{1} x_{2}$ has orthogonal diagonalization:

$$
A=\left(\begin{array}{ll}
0 & 3 \\
3 & 0
\end{array}\right)=P D P^{T}
$$

with

$$
P=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right), \quad D=\left(\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right) .
$$

This means:

- $Q\left(x_{1}, x_{2}\right)$ is maximized when $x_{1}=x_{2}=\frac{1}{\sqrt{2}}$,
- and the utility function has value 3 .

Translates to:

- The utility function $q\left(w_{1}, w_{2}\right)$ is maximized when $w_{1}=\frac{3}{\sqrt{2}}$ and $w_{2}=\frac{2}{\sqrt{2}}$,
- and the utility function has the same value 3.

