Announcements

Thursday, April 19

- Please fill out the CIOS form online. Current response: 15\%
- If we get an 80% response rate before the final, I'll drop the two lowest quiz grades instead of one.
- Optional Assignment: due by email on April 20th (midnight)
- Resources
- Office hours: posted on the website.
- Math Lab at Clough is also a good place to visit.
- Materials to review:
https://people.math.gatech.edu/~leslava3/1718S-2802.html
- Reading day Wednesday, April 25th:

Organic Chemistry \& Linear Algebra
3:00 PM - 5:00 PM

CHEM 1315 - CHEM 2311 - CHEM 2312 (solutions) - CHEM 2313 - MATH 1553 - MATH 1554

- Final Exam:
- Date: Thursday, April 26th
- Location: This lecture room, College of Comp. 017
- Time: 2:50-5:40 pm

Section 7.4

Singular Values Decomposition

Singular values of a matrix

What is important for this section:

- A constrained optimization problem where singular values appear
- How to find decomposition of A using singular values
- Condition number (avoid error-prone matrices)

Linear Transformation: Constrained optimization

EXAMPLE 1 If $A=\left[\begin{array}{rrr}4 & 11 & 14 \\ 8 & 7 & -2\end{array}\right]$, then the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ maps the unit sphere $\{\mathbf{x}:\|\mathbf{x}\|=1\}$ in \mathbb{R}^{3} onto an ellipse in \mathbb{R}^{2}, shown in Fig. 1. Find a unit vector \mathbf{x} at which the length $\|A \mathbf{x}\|$ is maximized, and compute this maximum length.

FIGURE 1 A transformation from \mathbb{R}^{3} to \mathbb{R}^{2}.

Want to maximize $\|A x\|^{2}$ subject to $\|x\|=1$.

This yields a quadratic function, as in section 7.3!

Linear Transformation: Constrained optimization

 continuedComputing $\|A x\|^{2}$ to obtain the quadratic function:

$$
\|A x\|^{2}=(A x)^{T}(A x)=x^{T}\left(A^{T} A\right) x
$$

where $A^{T} A$ is symmetric!

$$
A^{T} A=\left[\begin{array}{rr}
4 & 8 \\
11 & 7 \\
14 & -2
\end{array}\right]\left[\begin{array}{rrr}
4 & 11 & 14 \\
8 & 7 & -2
\end{array}\right]=\left[\begin{array}{rrr}
80 & 100 & 40 \\
100 & 170 & 140 \\
40 & 140 & 200
\end{array}\right]
$$

Solution. Look at eigenvalues of $A^{T} A$ and find the largest one.

Properties for $A^{T} A$

If A is an $m \times n$ matrix then

- $A^{T} A$ is symmetric
- All eigenvalues of $A^{T} A$ are real
- There is orthonormal basis $\left\{v_{1}, \ldots v_{n}\right\}$ where v_{i} 's are eigenvectors of $A^{T} A$.
- All eigenvalues are non-negative

$$
\begin{array}{rlrl}
\left\|A \mathbf{v}_{i}\right\|^{2} & =\left(A \mathbf{v}_{i}\right)^{T} A \mathbf{v}_{i}=\mathbf{v}_{i}^{T} A^{T} A \mathbf{v}_{i} \\
& =\mathbf{v}_{i}^{T}\left(\lambda_{i} \mathbf{v}_{i}\right) & & \text { Since } \mathbf{v}_{i} \text { is an eigenvector of } A^{T} A \\
& =\lambda_{i} & & \text { Since } \mathbf{v}_{i} \text { is a unit vector }
\end{array}
$$

Warning:

- Eigenvalues of $A^{T} A$ may be zero.
- Eigenvectors of $A^{T} A$ may not be eigenvectors of A.
- but... if $A^{T} A v=0$ then $A v=0$

In Fact:

- NulA has an orthogonal basis consisting of v_{i} 's which have $\sigma_{i}=0$

Singular Values for $m \times n$ matrix

Let A be an $m \times n$ matrix. Order the eigenvalues of $A^{T} A$:
$\lambda_{1} \geq \lambda_{2} \geq \ldots \lambda_{n} \geq 0$.

- The singular values of A are square roots:

$$
\sigma_{1}=\sqrt{\lambda_{1}}, \quad \sigma_{2}=\sqrt{\lambda_{2}}, \quad \ldots \quad \sigma_{n}=\sqrt{\lambda_{n}}
$$

- If $\left\{v_{1}, \ldots, v_{n}\right\}$ is orthonormal basis consisting of eigenvectors of $A^{T} A$, then singular values are lengths of vectors $A v_{i}$.

$$
\begin{array}{rlrl}
\left\|A \mathbf{v}_{i}\right\|^{2} & =\left(A \mathbf{v}_{i}\right)^{T} A \mathbf{v}_{i}=\mathbf{v}_{i}^{T} A^{T} A \mathbf{v}_{i} \\
& =\mathbf{v}_{i}^{T}\left(\lambda_{i} \mathbf{v}_{i}\right) & & \text { Since } \mathbf{v}_{i} \text { is an eigenvector of } A^{T} A \\
& =\lambda_{i} & & \text { Since } \mathbf{v}_{i} \text { is a unit vector }
\end{array}
$$

- Condition number of A is σ_{1} / σ_{n} Rule of thumb: Condition number is close to 1 then matrix A is less computational-error prone.

An old problem with a twist

Example

Find an orthogonal basis for $\operatorname{Col} A$
Old Procedure

- Select columns of A corresponding to pivot columns in row reduction.
- Apply Gram-Schmidt if necessary.

New Approach: Use $\left\{A v_{1}, \ldots A v_{r}\right\}$, where v_{i} are eigenvectors of $A^{T} A$
(details follow)

Orthogonal Basis for $\operatorname{Col} A$

Theorem

Suppose $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is an orthonormal basis of \mathbb{R}^{n} consisting of eigenvectors of $A^{T} A$, arranged so that the corresponding eigenvalues of $A^{T} A$ satisfy $\lambda_{1} \geq \cdots \geq \lambda_{n}$, and suppose A has r nonzero singular values. Then $\left\{A \mathbf{v}_{1}, \ldots, A \mathbf{v}_{r}\right\}$ is an orthogonal basis for $\operatorname{Col} A$, and $\operatorname{rank} A=r$.

Why?

- The vectors v_{1}, \ldots, v_{r} are orthogonal:

$$
\left(A v_{i}\right)^{T}\left(A v_{j}\right)=v_{i}^{T}\left(A^{T} A\right) v_{j}=\lambda_{j}\left(v_{i}^{T} v_{j}\right)=0
$$

- Same argument is true for all collection v_{1}, \ldots, v_{n},
- but take only vectors v_{i} corresponding to $\lambda_{i}>0$ because otherwise:

$$
\begin{array}{rlrl}
\left\|A \mathbf{v}_{i}\right\|^{2} & =\left(A \mathbf{v}_{i}\right)^{T} A \mathbf{v}_{i}=\mathbf{v}_{i}^{T} A^{T} A \mathbf{v}_{i} \\
& =\mathbf{v}_{i}^{T}\left(\lambda_{i} \mathbf{v}_{i}\right) & & \text { Since } \mathbf{v}_{i} \text { is an eigenvector of } A^{T} A \\
& =\lambda_{i} & & \text { Since } \mathbf{v}_{i} \text { is a unit vector }
\end{array}
$$

The SVD decomposition theorem

The Singular Value Decomposition

Let A be an $m \times n$ matrix with rank r. Then there exists an $m \times n$ matrix Σ as in (3) for which the diagonal entries in D are the first r singular values of A, $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0$, and there exist an $m \times m$ orthogonal matrix U and an $n \times n$ orthogonal matrix V such that

$$
A=U \Sigma V^{T}
$$

The matrix Σ has same number of rows/columns as A.

\[

\]

The only non-zero entries correspond to non-zero singular values

The SVD decomposition theorem

 cont.
The Singular Value Decomposition

Let A be an $m \times n$ matrix with rank r. Then there exists an $m \times n$ matrix Σ as in (3) for which the diagonal entries in D are the first r singular values of A, $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0$, and there exist an $m \times m$ orthogonal matrix U and an $n \times n$ orthogonal matrix V such that

$$
A=U \Sigma V^{T}
$$

1. The matrix V has the orthonormal basis found in the decomposition $A^{T} A=P D P^{T}$.

- That is, P has vector columns $v_{1}, v_{2}, \ldots, v_{n}$

2. Matrix D has diagonal entries $\sigma_{1}^{2} \geq \sigma_{2}^{2}, \ldots, \sigma_{n}^{2}$
3. For matrix U :

- For all indices with $\sigma_{i} \neq 0$, write $u_{i}=\frac{1}{\sigma_{i}} A v_{i}$ extend $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right\}$ to an orthonormal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right\}$ of \mathbb{R}^{m}, and let

$$
U=\left[\begin{array}{llll}
\mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{m}
\end{array}\right] \text { and } V=\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}
\end{array}\right]
$$

Example: SVD decomposition of an $m \times n$ matrix

Example

Construct an SDV decomposition for $A=\left(\begin{array}{ccc}4 & 11 & 14 \\ 8 & 7 & -2\end{array}\right)$

1. Find an orthogonal diagonalization of $A^{T} A=P D P^{T}$. Entries in D are in decreasing order: $\lambda_{1}=360, \lambda_{2}=90, \lambda_{3}=0$.
2. Let $V=P$

$$
V=\left[\begin{array}{lll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}
\end{array}\right]=\left[\begin{array}{rrr}
1 / 3 & -2 / 3 & 2 / 3 \\
2 / 3 & -1 / 3 & -2 / 3 \\
2 / 3 & 2 / 3 & 1 / 3
\end{array}\right]
$$

3. Non-singular values $\sigma_{1}=6 \sqrt{10}, \sigma_{2}=3 \sqrt{10}$ define first columns of U

$$
\begin{aligned}
& \mathbf{u}_{1}=\frac{1}{\sigma_{1}} A \mathbf{v}_{1}=\frac{1}{6 \sqrt{10}}\left[\begin{array}{c}
18 \\
6
\end{array}\right]=\left[\begin{array}{l}
3 / \sqrt{10} \\
1 / \sqrt{10}
\end{array}\right] \\
& \mathbf{u}_{2}=\frac{1}{\sigma_{2}} A \mathbf{v}_{2}=\frac{1}{3 \sqrt{10}}\left[\begin{array}{c}
3 \\
-9
\end{array}\right]=\left[\begin{array}{c}
1 / \sqrt{10} \\
-3 / \sqrt{10}
\end{array}\right]
\end{aligned}
$$

4. If necessary, complete $\left\{u_{1}, \ldots, u_{m}\right\}$ to an orthonormal basis of \mathbf{R}^{m}. (Extra columns correspond to a basis of Nu I)
5. Σ is has entries σ_{1}, σ_{2} on 'diagonal'.

Example: SVD decomposition of an $m \times n$ matrix

 Continued
Example

Construct an SDV decomposition for $A=\left(\begin{array}{ccc}4 & 11 & 14 \\ 8 & 7 & -2\end{array}\right)$

- The non-zero singular values are $\sigma_{1}=6 \sqrt{10}, \sigma_{2}=3 \sqrt{10}$
- Let $V=P$

$$
V=\left[\begin{array}{lll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}
\end{array}\right]=\left[\begin{array}{rrr}
1 / 3 & -2 / 3 & 2 / 3 \\
2 / 3 & -1 / 3 & -2 / 3 \\
2 / 3 & 2 / 3 & 1 / 3
\end{array}\right]
$$

- Non-singular values $\sigma_{1}=6 \sqrt{10}, \sigma_{2}=3 \sqrt{10}$ define first columns of U

$$
\begin{aligned}
& \mathbf{u}_{1}=\frac{1}{\sigma_{1}} A \mathbf{v}_{1}=\frac{1}{6 \sqrt{10}}\left[\begin{array}{r}
18 \\
6
\end{array}\right]=\left[\begin{array}{l}
3 / \sqrt{10} \\
1 / \sqrt{10}
\end{array}\right] \\
& \mathbf{u}_{2}=\frac{1}{\sigma_{2}} A \mathbf{v}_{2}=\frac{1}{3 \sqrt{10}}\left[\begin{array}{r}
3 \\
-9
\end{array}\right]=\left[\begin{array}{r}
1 / \sqrt{10} \\
-3 / \sqrt{10}
\end{array}\right]
\end{aligned}
$$

- Decomposition:

