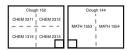
Announcements

Thursday, April 19

- ▶ Please fill out the CIOS form online. *Current response*: 15%
 - ▶ If we get an 80% response rate before the final, I'll drop the two lowest quiz grades instead of one.
- Optional Assignment: due by email on April 20th (midnight)
- Resources
 - Office hours: posted on the website.
 - ▶ Math Lab at Clough is also a good place to visit.
 - Materials to review: https://people.math.gatech.edu/~leslava3/1718S-2802.html
 - Reading day Wednesday, April 25th:

Organic Chemistry & Linear Algebra 3:00 PM - 5:00 PM



CHEM 1315 - CHEM 2311 - CHEM 2312 (solutions) - CHEM 2313 - MATH 1553 - MATH 1554

► Final Exam:

- Date: Thursday, April 26th
- Location: This lecture room, College of Comp. 017
- ► Time: 2:50-5:40 pm

Section 7.4

Singular Values Decomposition

Singular values of a matrix

What is important for this section:

- A constrained optimization problem where singular values appear
- ▶ How to find decomposition of *A* using singular values
- Condition number (avoid error-prone matrices)

Linear Transformation: Constrained optimization

EXAMPLE 1 If $A = \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix}$, then the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps the unit sphere $\{\mathbf{x} : \|\mathbf{x}\| = 1\}$ in \mathbb{R}^3 onto an ellipse in \mathbb{R}^2 , shown in Fig. 1. Find a unit vector \mathbf{x} at which the length $\|A\mathbf{x}\|$ is maximized, and compute this maximum length.

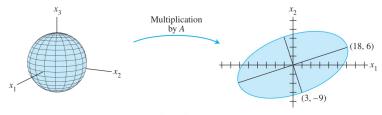


FIGURE 1 A transformation from \mathbb{R}^3 to \mathbb{R}^2 .

Want to maximize $||Ax||^2$ subject to ||x|| = 1.

This yields a quadratic function, as in section 7.3!

Linear Transformation: Constrained optimization

Computing $||Ax||^2$ to obtain the quadratic function:

$$||Ax||^2 = (Ax)^T (Ax) = x^T (A^T A)x$$

where $A^T A$ is symmetric!

$$A^{T}A = \begin{bmatrix} 4 & 8 \\ 11 & 7 \\ 14 & -2 \end{bmatrix} \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix} = \begin{bmatrix} 80 & 100 & 40 \\ 100 & 170 & 140 \\ 40 & 140 & 200 \end{bmatrix}$$

Solution. Look at eigenvalues of A^TA and find the largest one.

Properties for $A^T A$

If A is an $m \times n$ matrix then

- \triangleright A^TA is symmetric
- \blacktriangleright All eigenvalues of A^TA are real
- ▶ There is orthonormal basis $\{v_1, \dots v_n\}$ where v_i 's are eigenvectors of $A^T A$.
- ▶ All eigenvalues are non-negative

$$||A\mathbf{v}_i||^2 = (A\mathbf{v}_i)^T A \mathbf{v}_i = \mathbf{v}_i^T A^T A \mathbf{v}_i$$

$$= \mathbf{v}_i^T (\lambda_i \mathbf{v}_i) \qquad \text{Since } \mathbf{v}_i \text{ is an eigenvector of } A^T A$$

$$= \lambda_i \qquad \text{Since } \mathbf{v}_i \text{ is a unit vector}$$

Warning:

- Eigenvalues of A^TA may be zero.
- ▶ Eigenvectors of A^TA may not be eigenvectors of A.
- **but...** if $A^T A v = 0$ then A v = 0

In Fact:

▶ NulA has an orthogonal basis consisting of v_i 's which have $\sigma_i = 0$

Singular Values for $m \times n$ matrix

Let A be an $m \times n$ matrix. Order the eigenvalues of $A^T A$: $\lambda_1 \geq \lambda_2 \geq \dots \lambda_n \geq 0$.

► The singular values of A are square roots:

$$\sigma_1 = \sqrt{\lambda_1}, \qquad \sigma_2 = \sqrt{\lambda_2}, \qquad \dots \qquad \sigma_n = \sqrt{\lambda_n}$$

▶ If $\{v_1, ..., v_n\}$ is orthonormal basis consisting of eigenvectors of $A^T A$, then singular values are *lengths* of vectors Av_i .

$$\|A\mathbf{v}_i\|^2 = (A\mathbf{v}_i)^T A \mathbf{v}_i = \mathbf{v}_i^T A^T A \mathbf{v}_i$$

$$= \mathbf{v}_i^T (\lambda_i \mathbf{v}_i) \qquad \text{Since } \mathbf{v}_i \text{ is an eigenvector of } A^T A$$

$$= \lambda_i \qquad \text{Since } \mathbf{v}_i \text{ is a unit vector}$$

▶ Condition number of A is σ_1/σ_n Rule of thumb: Condition number is close to 1 then matrix A is less computational-error prone.

An old problem with a twist

Example

Find an orthogonal basis for Col A

Old Procedure

- ▶ Select columns of *A* corresponding to pivot columns in row reduction.
- Apply Gram-Schmidt if necessary.

New Approach: Use $\{Av_1, \dots Av_r\}$, where v_i are eigenvectors of A^TA

(details follow)

Orthogonal Basis for Col A

Theorem

Suppose $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ is an orthonormal basis of \mathbb{R}^n consisting of eigenvectors of A^TA , arranged so that the corresponding eigenvalues of A^TA satisfy $\lambda_1 \geq \cdots \geq \lambda_n$, and suppose A has r nonzero singular values. Then $\{A\mathbf{v}_1, \ldots, A\mathbf{v}_r\}$ is an orthogonal basis for Col A, and rank A = r.

Why?

▶ The vectors $v_1, ..., v_r$ are orthogonal:

$$(Av_i)^T (Av_j) = v_i^T (A^T A)v_j = \lambda_j (v_i^T v_j) = 0$$

- ▶ Same argument is true for all collection v_1, \ldots, v_n ,
- **but** take only vectors v_i corresponding to $\lambda_i > 0$ because otherwise:

$$\|A\mathbf{v}_i\|^2 = (A\mathbf{v}_i)^T A \mathbf{v}_i = \mathbf{v}_i^T A^T A \mathbf{v}_i$$

$$= \mathbf{v}_i^T (\lambda_i \mathbf{v}_i) \qquad \text{Since } \mathbf{v}_i \text{ is an eigenvector of } A^T A$$

$$= \lambda_i \qquad \text{Since } \mathbf{v}_i \text{ is a unit vector}$$

The SVD decomposition theorem

The Singular Value Decomposition

Let A be an $m \times n$ matrix with rank r. Then there exists an $m \times n$ matrix Σ as in (3) for which the diagonal entries in D are the first r singular values of A, $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$, and there exist an $m \times m$ orthogonal matrix U and an $n \times n$ orthogonal matrix V such that

$$A = U \Sigma V^T$$

The matrix Σ has same number of rows/columns as A.

$$\Sigma = \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix} \leftarrow m - r \text{ rows}$$

$$\uparrow \qquad n - r \text{ columns}$$

The only non-zero entries correspond to non-zero singular values

cont

The Singular Value Decomposition

Let A be an $m \times n$ matrix with rank r. Then there exists an $m \times n$ matrix Σ as in (3) for which the diagonal entries in D are the first r singular values of A, $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$, and there exist an $m \times m$ orthogonal matrix U and an $n \times n$ orthogonal matrix V such that

$$A = U \Sigma V^T$$

- 1. The matrix V has the orthonormal basis found in the decomposition $A^TA = PDP^T$.
 - ▶ That is, P has vector columns v_1, v_2, \ldots, v_n
- 2. Matrix *D* has diagonal entries $\sigma_1^2 \geq \sigma_2^2, \ldots, \sigma_n^2$
- 3. For matrix *U*:
 - For all indices with $\sigma_i \neq 0$, write $u_i = \frac{1}{\sigma_i} A v_i$ extend $\{\mathbf{u}_1, \dots, \mathbf{u}_r\}$ to an orthonormal basis $\{\mathbf{u}_1, \dots, \mathbf{u}_m\}$ of \mathbb{R}^m , and let

$$U = [\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_m]$$
 and $V = [\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_n]$

Example: SVD decomposition of an $m \times n$ matrix

Example

Construct an SDV decomposition for $A = \begin{pmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{pmatrix}$

- 1. Find an orthogonal diagonalization of $A^TA = PDP^T$. Entries in D are in decreasing order: $\lambda_1 = 360, \lambda_2 = 90, \lambda_3 = 0$.
- 2. Let V = P

$$V = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix} = \begin{bmatrix} 1/3 & -2/3 & 2/3 \\ 2/3 & -1/3 & -2/3 \\ 2/3 & 2/3 & 1/3 \end{bmatrix}$$

3. Non-singular values $\sigma_1 = 6\sqrt{10}$, $\sigma_2 = 3\sqrt{10}$ define first columns of U

$$\mathbf{u}_{1} = \frac{1}{\sigma_{1}} A \mathbf{v}_{1} = \frac{1}{6\sqrt{10}} \begin{bmatrix} 18\\6 \end{bmatrix} = \begin{bmatrix} 3/\sqrt{10}\\1/\sqrt{10} \end{bmatrix}$$
$$\mathbf{u}_{2} = \frac{1}{\sigma_{2}} A \mathbf{v}_{2} = \frac{1}{3\sqrt{10}} \begin{bmatrix} 3\\-9 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{10}\\-3/\sqrt{10} \end{bmatrix}$$

- 4. If necessary, complete $\{u_1, \ldots, u_m\}$ to an orthonormal basis of \mathbf{R}^m . (Extra columns correspond to a basis of *Nul A*)
- 5. Σ is has entries σ_1, σ_2 on 'diagonal'.

Example: SVD decomposition of an $m \times n$ matrix

Example

Construct an SDV decomposition for $A = \begin{pmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{pmatrix}$

- ▶ The non-zero singular values are $\sigma_1 = 6\sqrt{10}, \sigma_2 = 3\sqrt{10}$
- ▶ Let *V* = *P*

$$V = [\mathbf{v}_1 \quad \mathbf{v}_2 \quad \mathbf{v}_3] = \begin{bmatrix} 1/3 & -2/3 & 2/3 \\ 2/3 & -1/3 & -2/3 \\ 2/3 & 2/3 & 1/3 \end{bmatrix}$$

▶ Non-singular values $\sigma_1 = 6\sqrt{10}, \sigma_2 = 3\sqrt{10}$ define first columns of U

$$\begin{aligned} \mathbf{u}_1 &= \frac{1}{\sigma_1} A \mathbf{v}_1 = \frac{1}{6\sqrt{10}} \begin{bmatrix} 18\\6 \end{bmatrix} = \begin{bmatrix} 3/\sqrt{10}\\1/\sqrt{10} \end{bmatrix} \\ \mathbf{u}_2 &= \frac{1}{\sigma_2} A \mathbf{v}_2 = \frac{1}{3\sqrt{10}} \begin{bmatrix} 3\\-9 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{10}\\-3/\sqrt{10} \end{bmatrix} \end{aligned}$$

Decomposition:

$$A = \begin{bmatrix} 3/\sqrt{10} & 1/\sqrt{10} \\ 1/\sqrt{10} & -3/\sqrt{10} \end{bmatrix} \begin{bmatrix} 6\sqrt{10} & 0 & 0 \\ 0 & 3\sqrt{10} & 0 \end{bmatrix} \begin{bmatrix} 1/3 & 2/3 & 2/3 \\ -2/3 & -1/3 & 2/3 \\ 2/3 & -2/3 & 1/3 \end{bmatrix}$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$U \qquad \qquad \qquad \Sigma \qquad \qquad \downarrow^T$$