
Announcements
Tuesday, April 24

I Please fill out the CIOS form online. Current response: 68%
I If we get an 80% response rate before the final, I’ll drop the two lowest quiz

grades instead of one.

I Resources
I O�ce hours: posted on the website.

I Math Lab at Clough is also a good place to visit.

I Materials to review:

https://people.math.gatech.edu/~leslava3/1718S-2802.html
I Reading day Wednesday, April 25th:

I Final Exam:
I Date: Thursday, April 26th

I Location: This lecture room, College of Comp. 017

I Time: 2:50-5:40 pm



First factorization of MATH 2802

A guru provides, for (suitable) m ⇥ n matrix A, matrices L and U such that

I L is lower triangular m ⇥m matrix (with ones on the diagonal)

I U is an m ⇥ n row echelon form (not necessary reduced)

I A = LU

E.g.

A =

0

BB@

2 4 �1 5 �1
�4 �5 3 �8 1
2 �5 �4 1 8
�6 0 7 �3 1

1

CCA =

0

BB@

1 0 0 0
�2 1 0 0
1 �3 1 0
�3 4 2 1

1

CCA

0

BB@

2 4 �1 5 �2
0 3 1 2 �3
0 0 0 2 1
0 0 0 0 5

1

CCA

It helps to interpret L as instructions on how to sum rows of U.

The matrix LU



A short cut to solving equations

How to save time in solving Ax = b?

1. Visit the guru and get L and U,

2. Quickily solve Ly = b,

3. Quickily solve Ux = y ,

4. Claim that x is a solution to Ax = b.

Are we allowed to do that?

Check if x is really a solution: Start with the guru’s information A = LU

Ax = LUx = L(Ux) = Ly = b

Transformation A as a composition: first apply transformation
U then L.
Trace back to find a solution: First solve for L, then solve for U.

Interpret

A=LU Is × really a solution ?

Plugin  rates Ax  =L ,U¥=¥,

=b



Construct the matrix L

L = ((E6)(E5E4)(E3E2E1))
�1

2. Separate the row reduction according to ‘clearing’ pivot columns

(E6)(E5E4)(E3E2E1)A = U



A second example

Find the LU factorization of A:



Section 5.1

Eigenvectors and Eigenvalues



Eigenvectors and Eigenvalues

If v is not zero and Av = �v then
v is an eigenvector and � is its eigenvalue.

Definitions

I Eigenvalues and eigenvectors are only for square matrices.

I Eigenvectors are by definition nonzero. Eigenvalues may be equal to zero.

Example

A =

✓
2 2
�4 8

◆
v =

✓
1
1

◆

Multiply:

Av =

✓
2 2
�4 8

◆✓
1
1

◆
=

✓
4
4

◆
= 4v

Hence v is an eigenvector of A, with eigenvalue � = 4.



Eigenspaces

The �-eigenspace is a subspace of Rn containing all eigenvectors of A with
eigenvalue �, plus the zero vector:

�-eigenspace = Nul
�
A� �I

�
.

Find a basis for the 2-eigenspace of

A =

0

@
4 �1 6
2 1 6
2 �1 8

1

A .
�

A� 2I =

0

@
2 �1 6
2 �1 6
2 �1 6

1

A row reduce

0

@
1 � 1

2
3

0 0 0
0 0 0

1

A

parametric vector

form

0

@
v1
v2
v3

1

A = v2

0

@
1

2

1
0

1

A+ v3

0

@
�3
0
1

1

A

basis

8
<

:

0

@
1

2

1
0

1

A ,

0

@
�3
0
1

1

A

9
=

;



Summary

Let A be an n ⇥ n matrix and let � be a number.

1. � is an eigenvalue of A

if and only if (A� �I )x = 0 has a nontrivial solution.

2. Finding a basis for the �-eigenspace of A

means finding a basis for Nul(A� �I ),

3. The eigenvectors with eigenvalue � are

the nonzero elements of Nul(A� �I )

I If we know � is eigenvalue: easy to find eigenvectors (row reduction).

I And to find all eigenvalues? Will need to compute a determinant.

Finding � that has a non-trivial solution to (A� �I )v = 0 boils down to
finding � that makes det(A� �I ) = 0.



Some facts you can work out yourself

A is invertible if and only if 0 is not an eigenvalue of A.

Fact 1

If v1, v2, . . . , vk are eigenvectors of A with distinct eigenvalues
�1, . . . ,�k , then {v1, v2, . . . , vk} is linearly independent.

Fact 2

An n ⇥ n matrix has at most n distinct eigenvalues.

Consequence of Fact 2

The eigenvalues of a triangular matrix are the diagonal entries.

Fact 3



Diagonalization

The Diagonalization Theorem
An n ⇥ n matrix A is diagonalizable if and only if A has n linearly independent
eigenvectors.

In this case, A = PDP�1 for

P =

0

@
| | |
v1 v2 · · · vn
| | |

1

A D =

0

BBB@

�1 0 · · · 0
0 �2 · · · 0
...

...
. . .

...
0 0 · · · �n

1

CCCA
,

where v1, v2, . . . , vn are linearly independent eigenvectors, and �1,�2, . . . ,�n are
the corresponding eigenvalues (in the same order).



The Characteristic Polynomial

Last section we learn that for a square matrix A:

� is an eigenvalue of A () det(A� �I ) = 0.

The eigenvalues of A are the roots of det(A � �I ) ,
which is the characteristic polynomial of A.

Compute Eigenvalues

Definition
Let A be a square matrix. The characteristic polynomial of A is

f (�) = det(A� �I ).

The characteristic equation of A is the equation

f (�) = det(A� �I ) = 0.



Diagonalization
Procedure

How to diagonalize a matrix A:

1. Find the eigenvalues of A using the characteristic polynomial.

2. Compute a basis B� for each �-eigenspace of A.

3. If there are fewer than n total vectors in the union of all of the eigenspace
bases B�, then the matrix is not diagonalizable.

4. Otherwise, the n vectors v1, v2, . . . , vn in your eigenspace bases are linearly
independent, and A = PDP�1 for

P =

0

@
| | |
v1 v2 · · · vn
| | |

1

A and D =

0

BBB@

�1 0 · · · 0
0 �2 · · · 0
...

...
. . .

...
0 0 · · · �n

1

CCCA
,

where �i is the eigenvalue for vi .



Diagonalization
Example

Problem: Diagonalize A =

0

@
4 �3 0
2 �1 0
1 �1 1

1

A.

The characteristic polynomial is

f (�) = det(A� �I ) = ��3 + 4�2 � 5�+ 2 = �(�� 1)2(�� 2).

Therefore the eigenvalues are 1 and 2, with respective multiplicities 2 and 1.

First compute the 1-eigenspace:

(A� I )x = 0 ()

0

@
3 �3 0
2 �2 0
1 �1 0

1

A x = 0
rref

0

@
1 �1 0
0 0 0
0 0 0

1

A x = 0

The parametric vector form is

0

@
x
y
z

1

A = y

0

@
1
1
0

1

A+ z

0

@
0
0
1

1

A.

Hence a basis for the 1-eigenspace is

B1 =
�
v1, v2

 
where v1 =

0

@
1
1
0

1

A , v2 =

0

@
0
0
1

1

A .



Diagonalization
Example, continued

Now let’s compute the 2-eigenspace:

(A� 2I )x = 0 ()

0

@
2 �3 0
2 �3 0
1 �1 �1

1

A x = 0
rref

0

@
1 0 �3
0 1 �2
0 0 0

1

A x = 0

The parametric form is x = 3z , y = 2z , so an eigenvector with eigenvalue 2 is

v3 =

0

@
3
2
1

1

A .

Note that v1, v2 form a basis for the 1-eigenspace, and v3 has a distinct
eigenvalue. Thus, the eigenvectors v1, v2, v3 are linearly independent and the
Diagonalization Theorem says

A = PDP�1 for P =

0

@
1 0 3
1 0 2
0 1 1

1

A D =

0

@
1 0 0
0 1 0
0 0 2

1

A.

In this case: there are 3 linearly independent eigenvectors and only 2 distinct
eigenvalues.



Application

Stochastic Matrices and PageRank



Stochastic Matrices

These arise very commonly in modeling of probabalistic phenomena (Markov
chains), where they are also called transition matrices.

Some examples:

I Matrices from the population dynamics

I Matrices from the equilibrium-prices economies

Definition
A square matrix A is stochastic if all of its entries are nonnegative, and the
sum of the entries of each column is 1.

We say A is regular if, for some k, all entries of Ak are positive.

Definition
A steady-state vector v of A is a non-zero vector with entries summing to 1
and such that Av = v .



Random walks on graphs (a.k.a Mouse on a maze)

A mouse moves freely between rooms/states = selects any with equal
probability.

I Initial state: The mouse is located at some room i : probabilities

v0 = (x1,
..., x5).

I Probability mouse starts at room 1 is x1 item Transition matrix:
vn+1 = Avn means that A dictates how probabilities change.

I Probability mouse is at room 3 after n steps of the walk:

third entry of vn.



Non-regular transition matrix
Disconnected states

Consider the following ‘transition graph’:

D

A B C

E

1

1

1

2

1

2
1

2

1

2

1

2

1

2

The transition matrix is

0

BBBB@

0 1 0 0 0
1 0 0 0 0
0 0 0 1

2

1

2

0 0 1

2
0 1

2

0 0 1

2

1

2
0

1

CCCCA
.

Both

0

BBBB@

1
1
0
0
0

1

CCCCA
and

0

BBBB@

0
0
1
1
1

1

CCCCA
, are eigenvectors with eigenvalue 1.

So there is more than one steady-state vector!



Stochastic Matrices and Di↵erence Equations
Through an example

Red Box has kiosks all over where you can rent movies. You can return them
to any other kiosk.

I ij entry of A: probability that a movie rented from location j is returned to
location i .

For example, if there are three locations, maybe

A =

0

@
.3 .4 .5
.3 .4 .3
.4 .2 .2

1

A .

30% probability a movie rented

from location 3 gets returned

to location 2

On day n: xn, yn, zn are the numbers of movies in locations 1, 2, 3, respectively,
and vn = (xn, yn, zn).

If at opening day the movies are distributed according to v0 then,
on average:

vn = Avn�1 = A2vn�2 = · · · = Anv0.

Probabilistic Intuition



Diagonalizable Stochastic Matrices
Example, continued

Recall: An = PDnP�1 acts on the usual coordinates of v0 in the same way that
Dn acts on the B-coordinates, where B = {w1,w2}.

1-eigenspace1/2-eigenspace

w1

w2

v0
v1
v2
v3
v4

All vectors get “sucked into the 1-eigenspace.”



Diagonalizable Stochastic Matrices
Interpretation

If A is the Red Box matrix, and vn is the vector representing the number of
movies in the three locations on day n, then

vn+1 = Avn.

For any starting distribution v0 of videos in red boxes, after enough days, the
distribution v (= vn for n large) is an eigenvector with eigenvalue 1:

Av = v .

In other words, eventually the number of movies in each kiosk doesn’t change
much.

Moreover, we know exactly what v is: a multiple of w1

I The entries in v have to sum up to the number of intial movies (same sum
as entries in v0.

(Remember the total number of videos never changes.) Presumably, Red Box

really does have to do this kind of analysis to determine how many videos to
put in each box.



Find the actual Steady State w1

Red Box example

If one computes Nul(A� I ) and find that w 0 =

0

@
7
6
5

1

A

is an eigenvector with eigenvalue 1.

Then, to get a steady state, divide by 18 = 7 + 6 + 5 to get

w =
1
18

0

@
7
6
5

1

A ⇠ (0.39, 0.33, 0.28).

So if you start with 100 total movies, eventually you’ll have
100w = (39, 33, 28) movies in the three locations, every day.

The long-run

Regardless of the intital location of a particular movie. Eventu-
ally, that movie will get ‘returned’ 39% of the times at location
1, 33% at location 2, and 28% at location 3.

The time spent on a state



Section 7.3

Constrained Optimization



Motivation: How to allocate resources

Problem: The government wants to repair

I w1 hundred miles of public roads

I w2 hundred acres of parks

Resources are limited, so cannot work on more than

I 3 miles of roads or

I 2 acres of park;

I general condition is:
4w 2

1 + 9w 2

2  36

How to allocate resources?
Utility function: Considering overall benefits, want to maximize

q(w1,w2) = w1w2.

(i.e.Do not focus solely on roads nor parks)

How would you maximize utility q(w1,w2)?



The constraint in these optimization problems

We will keep the restriction that vectors x in Rn have unit length;

||x || = 1, x · x = 1 xT x = 1

or more commonly used: x2

1 + x2

2 + · · · x2

n .

Example
Q(x) = 3x2

1 + 7x2

2

Plot this function in 3-dimension as:
0

@
x1
x2

Q(x)

1

A

Given a quadratic form Q(x), restricted to unit vectors,

What is the maximum and minimum values of Q(x),
which vectors attain such extremes?

The constrained optimization problem



The Constrained Optimization theorem

Let A be a symmetric matrix and Q(x) = xTAx a quadratic
function

I Maximum: the maximum value of Q(x) subject to
xT x = 1 equals the largest eigenvalue M of A.

This maximum is attained by an eigenvector of A
corresponding to M.

I Minimum: the minimum value of Q(x) subject to xT x = 1
equals the smallest eigenvalue m of A.

This minimum is attained by an eigenvector of A
corresponding to m.

Theorem

How to use this information? To find maximum/minimum values of Q(x),
under restriction xT x = 1:

I Find the eigenvalues of A, list them in decreasing order �1 � �2 � · · ·�n.

I Then maximum is M = �1 and minimum is m = �n.



Example

Example
What is the maximum value of Q(x) = xTAx subject to xT x = 1,

A =

0

@
3 2 1
2 3 1
1 1 4

1

A.

For maximum value: compute the characteristic equation of A

det(A� �I ) = 0 = (�� 6)(�� 3)(�� 1).

Then the maximum value is 6.

For unit vector attaining Q(x) = 6: Find eigenvector of A corresponding to 6,

and normalize it!

Get both using a decompostion of A...



Have access to orthogonal diagonalization?

Example
What is the vector attaining the maximum value of Q(x) = xTAx subject to

xT x = 1, A =

✓
3 1
1 3

◆
.

If you have the orthogonal diagonalization of A:

✓
1/

p
2 �1/

p
2

1/
p
2 1/

p
2

◆✓
4 0
0 2

◆✓
1/

p
2 1/

p
2

�1/
p
2 1/

p
2

◆

I The maximum value is 4

I and the vectors attaining such

value are ±
✓
1/

p
2

1/
p
2

◆


