Announcements

Tuesday, April 24

- Please fill out the CIOS form online. Current response: 68\%
- If we get an 80% response rate before the final, I'll drop the two lowest quiz grades instead of one.
- Resources
- Office hours: posted on the website.
- Math Lab at Clough is also a good place to visit.
- Materials to review:
https://people.math.gatech.edu/~leslava3/1718S-2802.html
- Reading day Wednesday, April 25th:

Organic Chemistry \& Linear Algebra
3:00 PM - $5: 00 \mathrm{PM}$

CHEM 1315 - CHEM 2311 - CHEM 2312 (solutions) - CHEM 2313 - MATH 1553 - MATH 1554

- Final Exam:
- Date: Thursday, April 26th
- Location: This lecture room, College of Comp. 017
- Time: 2:50-5:40 pm

First factorization of MATH 2802

A guru provides, for (suitable) $m \times n$ matrix A, matrices L and U such that

- L is lower triangular $m \times m$ matrix (with ones on the diagonal)
- U is an $m \times n$ row echelon form (not necessary reduced)
- $A=L U$
E.g.

$$
A=\left(\begin{array}{ccccc}
2 & 4 & -1 & 5 & -1 \\
-4 & -5 & 3 & -8 & 1 \\
2 & -5 & -4 & 1 & 8 \\
-6 & 0 & 7 & -3 & 1
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-2 & 1 & 0 & 0 \\
1 & -3 & 1 & 0 \\
-3 & 4 & 2 & 1
\end{array}\right)\left(\begin{array}{ccccc}
2 & 4 & -1 & 5 & -2 \\
0 & 3 & 1 & 2 & -3 \\
0 & 0 & 0 & 2 & 1 \\
0 & 0 & 0 & 0 & 5
\end{array}\right)
$$

The matrix $L U$
It helps to interpret L as instructions on how to sum rows of U.

A short cut to solving equations

How to save time in solving $A x=b$?

1. Visit the guru and get L and U,
2. Quickily solve $L y=b$,
3. Quickily solve $U x=y$,
4. Claim that x is a solution to $A x=b$.

Are we allowed to do that?
$A=L \cup$ is x really a solution?
Plugin values $A x=\frac{\frac{U x}{Y}}{Y}=\frac{\frac{L Y}{b}}{b}=b$

Construct the matrix L

$E=\left(\left(E_{6}\right)\left(E_{5} E_{4}\right)\left(E_{3} E_{2} E_{1}\right)\right)^{-1}$

2. Separate the row reduction according to 'clearing' pivot columns

$$
\begin{aligned}
A & =\left[\begin{array}{rrrrr}
2 & 4 & -1 & 5 & -2 \\
-4 & -5 & 3 & -8 & 1 \\
2 & -5 & -4 & 1 & 8 \\
-6 & 0 & 7 & -3 & 1
\end{array}\right] \sim\left[\begin{array}{rrrrr}
2 & 4 & -1 & 5 & -2 \\
0 & 3 & 1 & 2 & -3 \\
0 & -9 & -3 & -4 & 10 \\
0 & 12 & 4 & 12 & -5
\end{array}\right]=A_{1} \\
{\left[\begin{array}{r}
2 \\
-4 \\
0
\end{array}\right]\left[\begin{array}{r}
3 \\
0
\end{array}\right] } & \sim A_{2}=\left[\begin{array}{rrrrr}
2 & 3 & 1 & 2 & -2 \\
0 & 0 & 0 & 2 & 1 \\
0 & 0 & 0 & 4 & 7
\end{array}\right] \sim\left[\begin{array}{rrrrr}
2 & 4 & -1 & 5 & -2 \\
0 & 3 & 1 & 2 & -3 \\
0 & 0 & 0 & 2 & 1 \\
0 & 0 & 0 & 0 & 5
\end{array}\right]=U
\end{aligned}
$$

A second example

Find the $L U$ factorization of A :

$$
\begin{aligned}
& A=\left[\begin{array}{rrrr}
2 & -4 & -2 & 3 \\
6 & -9 & -5 & 8 \\
2 & -7 & -3 & 9 \\
4 & -2 & -2 & -1 \\
-6 & 3 & 3 & 4
\end{array}\right] \sim\left[\begin{array}{rrrr}
2 & -4 & -2 & 3 \\
0 & 3 & 1 & -1 \\
0 & -3 & -1 & 6 \\
0 & 6 & 2 & -7 \\
0 & -9 & -3 & 13
\end{array}\right] \\
& \sim\left[\begin{array}{rrrr}
2 & -4 & -2 & 3 \\
0 & 3 & 1 & -1 \\
0 & 0 & 0 & 5 \\
0 & 0 & 0 & -5 \\
0 & 0 & 0 & 10
\end{array}\right] \sim\left[\begin{array}{rrrr}
2 & -4 & -2 & 3 \\
0 & 3 & 1 & -1 \\
0 & 0 & 0 & 5 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]=U
\end{aligned}
$$

$$
L=\left[\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
3 & 1 & 0 & 0 & 0 \\
1 & -1 & 1 & 0 & 0 \\
2 & 2 & -1 & 1 & 0 \\
-3 & -3 & 2 & 0 & 1
\end{array}\right]
$$

Section 5.1

Eigenvectors and Eigenvalues

Eigenvectors and Eigenvalues

```
Definitions
If v}\mathrm{ is not zero and }Av=\lambdav\mathrm{ then
v}\mathrm{ is an eigenvector and }\lambda\mathrm{ is its eigenvalue.
```

- Eigenvalues and eigenvectors are only for square matrices.
- Eigenvectors are by definition nonzero. Eigenvalues may be equal to zero.

Example

$$
A=\left(\begin{array}{cc}
2 & 2 \\
-4 & 8
\end{array}\right) \quad v=\binom{1}{1}
$$

Multiply:

$$
A v=\left(\begin{array}{cc}
2 & 2 \\
-4 & 8
\end{array}\right)\binom{1}{1}=\binom{4}{4}=4 v
$$

Hence v is an eigenvector of A, with eigenvalue $\lambda=4$.

Eigenspaces

The λ-eigenspace is a subspace of \mathbf{R}^{n} containing all eigenvectors of A with eigenvalue λ, plus the zero vector:

$$
\lambda \text {-eigenspace }=\operatorname{Nul}(A-\lambda I) .
$$

Find a basis for the 2-eigenspace of

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
4 & -1 & 6 \\
2 & 1 & 6 \\
2 & -1 & 8
\end{array}\right) . \\
& A-2 I=\left(\begin{array}{lll}
2 & -1 & 6 \\
2 & -1 & 6 \\
2 & -1 & 6
\end{array}\right) \text { mow reduce } \quad\left(\begin{array}{ccc}
1 & -\frac{1}{2} & 3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& \underset{\substack{\text { parametric vector } \\
\text { form } \\
\text { mannum }}}{\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)}=v_{2}\left(\begin{array}{c}
\frac{1}{2} \\
1 \\
0
\end{array}\right)+v_{3}\left(\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right) \\
& \underset{\text { masis }}{\text { basis }}\left\{\left(\begin{array}{l}
\frac{1}{2} \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right)\right\}
\end{aligned}
$$

Summary

Let A be an $n \times n$ matrix and let λ be a number.

1. λ is an eigenvalue of A
if and only if $(A-\lambda I) x=0$ has a nontrivial solution.
2. Finding a basis for the λ-eigenspace of A means finding a basis for $\operatorname{Nul}(A-\lambda I)$,
3. The eigenvectors with eigenvalue λ are the nonzero elements of $\operatorname{Nul}(A-\lambda I)$

- If we know λ is eigenvalue: easy to find eigenvectors (row reduction).
- And to find all eigenvalues? Will need to compute a determinant. Finding λ that has a non-trivial solution to $(A-\lambda I) v=0$ boils down to finding λ that makes $\operatorname{det}(A-\lambda I)=0$.

Some facts you can work out yourself

Fact 1

A is invertible if and only if 0 is not an eigenvalue of A.

Fact 2
If $v_{1}, v_{2}, \ldots, v_{k}$ are eigenvectors of A with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$, then $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is linearly independent.

Consequence of Fact 2
An $n \times n$ matrix has at most n distinct eigenvalues.

Fact 3
The eigenvalues of a triangular matrix are the diagonal entries.

Diagonalization

The Diagonalization Theorem
An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.
In this case, $A=P D P^{-1}$ for

$$
P=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{n} \\
\mid & \mid & & \mid
\end{array}\right) \quad D=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right),
$$

where $v_{1}, v_{2}, \ldots, v_{n}$ are linearly independent eigenvectors, and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the corresponding eigenvalues (in the same order).

The Characteristic Polynomial

Last section we learn that for a square matrix A :
λ is an eigenvalue of $A \Longleftrightarrow \operatorname{det}(A-\lambda I)=0$.

Compute Eigenvalues
The eigenvalues of A are the roots of $\operatorname{det}(A-\lambda I)$, which is the characteristic polynomial of A.

Definition
Let A be a square matrix. The characteristic polynomial of A is

$$
f(\lambda)=\operatorname{det}(A-\lambda I) .
$$

The characteristic equation of A is the equation

$$
f(\lambda)=\operatorname{det}(A-\lambda /)=0 .
$$

Diagonalization

Procedure

How to diagonalize a matrix A :

1. Find the eigenvalues of A using the characteristic polynomial.
2. Compute a basis \mathcal{B}_{λ} for each λ-eigenspace of A.
3. If there are fewer than n total vectors in the union of all of the eigenspace bases \mathcal{B}_{λ}, then the matrix is not diagonalizable.
4. Otherwise, the n vectors $v_{1}, v_{2}, \ldots, v_{n}$ in your eigenspace bases are linearly independent, and $A=P D P^{-1}$ for

$$
P=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{n} \\
\mid & \mid & & \mid
\end{array}\right) \quad \text { and } \quad D=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right)
$$

where λ_{i} is the eigenvalue for v_{i}.

Diagonalization

Example

Problem: Diagonalize $A=\left(\begin{array}{ccc}4 & -3 & 0 \\ 2 & -1 & 0 \\ 1 & -1 & 1\end{array}\right)$.
The characteristic polynomial is

$$
f(\lambda)=\operatorname{det}(A-\lambda I)=-\lambda^{3}+4 \lambda^{2}-5 \lambda+2=-(\lambda-1)^{2}(\lambda-2)
$$

Therefore the eigenvalues are 1 and 2 , with respective multiplicities 2 and 1 .
First compute the 1-eigenspace:

$$
(A-I) x=0 \Longleftrightarrow\left(\begin{array}{lll}
3 & -3 & 0 \\
2 & -2 & 0 \\
1 & -1 & 0
\end{array}\right) x=0 \underset{\sim}{\text { ref }} \rightarrow\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) x=0
$$

The parametric vector form is $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=y\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)+z\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$.
Hence a basis for the 1-eigenspace is

$$
\mathcal{B}_{1}=\left\{v_{1}, v_{2}\right\} \quad \text { where } \quad v_{1}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), \quad v_{2}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) .
$$

Diagonalization

Example, continued

Now let's compute the 2-eigenspace:

$$
(A-2 I) x=0 \Longleftrightarrow\left(\begin{array}{ccc}
2 & -3 & 0 \\
2 & -3 & 0 \\
1 & -1 & -1
\end{array}\right) x=0 \stackrel{\text { rref }}{m \sim}\left(\begin{array}{ccc}
1 & 0 & -3 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right) x=0
$$

The parametric form is $x=3 z, y=2 z$, so an eigenvector with eigenvalue 2 is

$$
v_{3}=\left(\begin{array}{l}
3 \\
2 \\
1
\end{array}\right)
$$

Note that v_{1}, v_{2} form a basis for the 1-eigenspace, and v_{3} has a distinct eigenvalue. Thus, the eigenvectors v_{1}, v_{2}, v_{3} are linearly independent and the Diagonalization Theorem says

$$
A=P D P^{-1} \quad \text { for } \quad P=\left(\begin{array}{lll}
1 & 0 & 3 \\
1 & 0 & 2 \\
0 & 1 & 1
\end{array}\right) \quad D=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

In this case: there are 3 linearly independent eigenvectors and only 2 distinct eigenvalues.

Application

Stochastic Matrices and PageRank

Stochastic Matrices

These arise very commonly in modeling of probabalistic phenomena (Markov chains), where they are also called transition matrices.

Some examples:

- Matrices from the population dynamics
- Matrices from the equilibrium-prices economies

Definition

A square matrix A is stochastic if all of its entries are nonnegative, and the sum of the entries of each column is 1 .
We say A is regular if, for some k, all entries of A^{k} are positive.

Definition

A steady-state vector v of A is a non-zero vector with entries summing to 1 and such that $A v=v$.

Random walks on graphs (a.k.a Mouse on a maze)

A mouse moves freely between rooms/states = selects any with equal probability.

$$
P=\left[\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
0 & 1 / 3 & 1 / 4 & 0 & 0 \\
1 / 2 & 0 & 1 / 4 & 1 / 3 & 0 \\
1 / 2 & 1 / 3 & 0 & 1 / 3 & 1 / 2 \\
0 & 1 / 3 & 1 / 4 & 0 & 1 / 2 \\
0 & 0 & 1 / 4 & 1 / 3 & 0
\end{array}\right] \begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5
\end{aligned}
$$

- Initial state: The mouse is located at some room i : probabilities

$$
v_{0}=\left(x_{1}, \therefore, x_{5}\right)
$$

- Probability mouse starts at room 1 is x_{1} item Transition matrix: $v_{n+1}=A v_{n}$ means that A dictates how probabilities change.
- Probability mouse is at room 3 after n steps of the walk: third entry of v_{n}.

Non-regular transition matrix

Disconnected states

Consider the following 'transition graph':

The transition matrix is $\left(\begin{array}{ccccc}0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0\end{array}\right)$.
Both $\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 1 \\ 1\end{array}\right)$, are eigenvectors with eigenvalue 1.
So there is more than one steady-state vector!

Stochastic Matrices and Difference Equations

Through an example

Red Box has kiosks all over where you can rent movies. You can return them to any other kiosk.

- ij entry of A: probability that a movie rented from location j is returned to location i.

For example, if there are three locations, maybe

$$
A=\left(\begin{array}{lll}
.3 & .4 & .5 \\
.3 & .4 & .3 \\
.4 & .2 & .2
\end{array}\right) . \quad \begin{aligned}
& 30 \% \text { probability a movie rented } \\
& \text { from location } 3 \text { gets returned } \\
& \text { to location } 2
\end{aligned}
$$

On day $n: x_{n}, y_{n}, z_{n}$ are the numbers of movies in locations $1,2,3$, respectively, and $v_{n}=\left(x_{n}, y_{n}, z_{n}\right)$.

Probabilistic Intuition

If at opening day the movies are distributed according to v_{0} then, on average:

$$
v_{n}=A v_{n-1}=A^{2} v_{n-2}=\cdots=A^{n} v_{0}
$$

Diagonalizable Stochastic Matrices

Example, continued

Recall: $A^{n}=P D^{n} P^{-1}$ acts on the usual coordinates of v_{0} in the same way that D^{n} acts on the \mathcal{B}-coordinates, where $\mathcal{B}=\left\{w_{1}, w_{2}\right\}$.

All vectors get "sucked into the 1-eigenspace."

Diagonalizable Stochastic Matrices

If A is the Red Box matrix, and v_{n} is the vector representing the number of movies in the three locations on day n, then

$$
v_{n+1}=A v_{n} .
$$

For any starting distribution v_{0} of videos in red boxes, after enough days, the distribution $v\left(=v_{n}\right.$ for n large) is an eigenvector with eigenvalue 1 :

$$
A v=v
$$

In other words, eventually the number of movies in each kiosk doesn't change much.

Moreover, we know exactly what v is: a multiple of w_{1}

- The entries in v have to sum up to the number of intial movies (same sum as entries in v_{0}.
(Remember the total number of videos never changes.) Presumably, Red Box really does have to do this kind of analysis to determine how many videos to put in each box.

Find the actual Steady State w_{1}

Red Box example

If one computes $\operatorname{Nul}(A-I)$ and find that $w^{\prime}=\left(\begin{array}{l}7 \\ 6 \\ 5\end{array}\right)$
is an eigenvector with eigenvalue 1 .
Then, to get a steady state, divide by $18=7+6+5$ to get

$$
w=\frac{1}{18}\left(\begin{array}{l}
7 \\
6 \\
5
\end{array}\right) \sim(0.39,0.33,0.28)
$$

The long-run
So if you start with 100 total movies, eventually you'll have $100 w=(39,33,28)$ movies in the three locations, every day.

The time spent on a state

Regardless of the intital location of a particular movie. Eventually, that movie will get 'returned' 39% of the times at location $1,33 \%$ at location 2 , and 28% at location 3.

Section 7.3

Constrained Optimization

Motivation: How to allocate resources

Problem: The government wants to repair

- w_{1} hundred miles of public roads
- w_{2} hundred acres of parks

Resources are limited, so cannot work on more than

- 3 miles of roads or
- 2 acres of park;
- general condition is:

$$
4 w_{1}^{2}+9 w_{2}^{2} \leq 36
$$

How to allocate resources?
Utility function: Considering overall benefits, want to maximize

$$
q\left(w_{1}, w_{2}\right)=w_{1} w_{2}
$$

(i.e.Do not focus solely on roads nor parks)

How would you maximize utility $q\left(w_{1}, w_{2}\right)$?

The constraint in these optimization problems

We will keep the restriction that vectors x in \mathbf{R}^{n} have unit length;

$$
\|x\|=1, \quad x \cdot x=1 \quad x^{\top} x=1
$$

or more commonly used: $x_{1}^{2}+x_{2}^{2}+\cdots x_{n}^{2}$.

Example
 $Q(x)=3 x_{1}^{2}+7 x_{2}^{2}$

Plot this function in 3-dimension as:

$$
\left(\begin{array}{c}
x_{1} \\
x_{2} \\
Q(x)
\end{array}\right)
$$

FIGURE 2 The intersection of $z=$
$3 x_{1}^{2}+7 x_{2}^{2}$ and the cylinder $x_{1}^{2}+x_{2}^{2}=1$.

The constrained optimization problem
Given a quadratic form $Q(x)$, restricted to unit vectors, What is the maximum and minimum values of $Q(x)$, which vectors attain such extremes?

The Constrained Optimization theorem

Theorem

Let A be a symmetric matrix and $Q(x)=x^{\top} A x$ a quadratic function

- Maximum: the maximum value of $Q(x)$ subject to $x^{\top} x=1$ equals the largest eigenvalue M of A.
This maximum is attained by an eigenvector of A corresponding to M.
- Minimum: the minimum value of $Q(x)$ subject to $x^{T} x=1$ equals the smallest eigenvalue m of A.
This minimum is attained by an eigenvector of A corresponding to m.

How to use this information? To find maximum/minimum values of $Q(x)$, under restriction $x^{\top} x=1$:

- Find the eigenvalues of A, list them in decreasing order $\lambda_{1} \geq \lambda_{2} \geq \cdots \lambda_{n}$.
- Then maximum is $M=\lambda_{1}$ and minimum is $m=\lambda_{n}$.

Example

Example

What is the maximum value of $Q(x)=x^{T} A x$ subject to $x^{T} x=1$,
$A=\left(\begin{array}{lll}3 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 4\end{array}\right)$.

For maximum value: compute the characteristic equation of A

$$
\operatorname{det}(A-\lambda I)=0=(\lambda-6)(\lambda-3)(\lambda-1) .
$$

Then the maximum value is 6 .

For unit vector attaining $Q(x)=6$: Find eigenvector of A corresponding to 6 , and normalize it!

Get both using a decompostion of A...

Have access to orthogonal diagonalization?

Example

What is the vector attaining the maximum value of $Q(x)=x^{T} A x$ subject to $x^{T} x=1, A=\left(\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right)$.

If you have the orthogonal diagonalization of A :

$$
\left(\begin{array}{cc}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right)\left(\begin{array}{ll}
4 & 0 \\
0 & 2
\end{array}\right)\left(\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
-1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right)
$$

- The maximum value is 4
- and the vectors attaining such value are $\pm\binom{ 1 / \sqrt{2}}{1 / \sqrt{2}}$

The maximum value of $Q(\mathbf{x})$ subject to $\mathbf{x}^{T} \mathbf{x}=1$ is 4 .

