
Announcements
Tuesday, February 27

Written Assignment:Prioritize quality over quantity.

Setting: Representing a star-up, you are writing a report to a big company to
offer your services. In 2-3 pages, cover the following issues:

I Give a 1/2 page summary of the proposal targeted to a layman

I What is the problem of the company (be creative)

I What is your proposed solution

I Why does your solution works (technical background)

I How will you implement the solution

Suggested companies/projects:

I Pixar’s 3D simulations, Urban Planning, Tracing the trayectory of Falcon 9

Grading Scheme:

1. Correctness: 4pts

2. Clarity: 4pts

3. Creativity: 3pts

Deadline: Emailed in PDF by April 20th

Group Sizes: 3-4 persons

I Suggested sources: Sections

I 2.6,2.7,3.3,4.8,4.9,5.6,5.7,5.8,

6.4,6.6,6.8,7.5,10.1,10.3,10.4

I Not exclusively Chapter 1



Application

Stochastic Matrices and PageRank



Stochastic Matrices

These arise very commonly in modeling of probabalistic phenomena (Markov
chains), where they are also called transition matrices.

Some examples:

I Matrices from the population dynamics

I Matrices from the equilibrium-prices economies

Definition
A square matrix A is stochastic if all of its entries are nonnegative, and the
sum of the entries of each column is 1.

We say A is regular if, for some k, all entries of Ak are positive.

Definition
A steady-state vector v of A is a non-zero vector with entries summing to 1
and such that Av = v .



Random walks on graphs (a.k.a Mouse on a maze)

A mouse moves freely between rooms/states = selects any with equal
probability.

I Initial state: The mouse is located at some room i : probabilities

v0 = (x1,
..., x5).

I Probability mouse starts at room 1 is x1 item Transition matrix:
vn+1 = Avn means that A dictates how probabilities change.

I Probability mouse is at room 3 after n steps of the walk:
third entry of vn.



Non-regular transition matrix
Disconnected states

Consider the following ‘transition graph’:
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, are eigenvectors with eigenvalue 1.

So there is more than one steady-state vector!



Stochastic Matrices and Difference Equations
Through an example

Red Box has kiosks all over where you can rent movies. You can return them
to any other kiosk.

I ij entry of A: probability that a movie rented from location j is returned to
location i .

For example, if there are three locations, maybe

A =

 .3 .4 .5
.3 .4 .3
.4 .2 .2

 .

30% probability a movie rented
from location 3 gets returned
to location 2

On day n: xn, yn, zn are the numbers of movies in locations 1, 2, 3, respectively,
and vn = (xn, yn, zn).

If at opening day the movies are distributed according to v0 then,
on average:

vn = Avn−1 = A2vn−2 = · · · = Anv0.

Probabilistic Intuition



Eigenvalues of Stochastic Matrices

Fact: 1 is an eigenvalue of a stochastic matrix.

Why? If A is stochastic, then 1 is an eigenvalue of AT : .3 .3 .4
.4 .4 .2
.5 .3 .2

 1
1
1

 = 1 ·

1
1
1

 .

Lemma
A and AT have the same eigenvalues.

Proof: det(A− λI ) = det
(
(A− λI )T

)
= det(AT − λI ), so they have the same

characteristic polynomial.
Note: This doesn’t give a new procedure for finding an eigenvector with
eigenvalue 1; it only shows one exists.

Stonger fact: if λ 6= 1 is an eigenvalue of a regular stochastic matrix, then
|λ| < 1.



Eigenvalues of Stochastic Matrices
Continued

So: If λ is an eigenvalue of A then it is an eigenvalue of AT .

eigenvector v =


x1
x2
...
xn

 λv = AT v =⇒ λxj =
∑n

i=1 aijxi .

jth entry of AT v

Choose xj with the largest absolute value, so |xi | ≤ |xj | for all i .

|λ| · |xj | =

∣∣∣∣∣
n∑

i=1

aijxi

∣∣∣∣∣ ≤
n∑

i=1

aij · |xi | ≤
n∑

i=1

aij · |xj | = 1 · |xj |,

so |λ| ≤ 1.

positive

≥ |xi |

=
∑

i aij

Conclusion: if λ 6= 1 is an eigenvalue of a stochastic matrix with all entries
positive, then |λ| < 1. This proof is adapted for regular matrices.

Except for the 1-eigenspace, all the others are shriking!
What happens in the long run?

Dynamical systems



Diagonalizable Stochastic Matrices
Example from §5.3

Let A =

(
3/4 1/4
1/4 3/4

)
. This is a regular stochastic matrix.

We saw last time that A is diagonalizable:

A = PDP−1 for P =

(
1 1
1 −1

)
D =

(
1 0
0 1/2

)
.

Change of basis: Let w1 =
(
1
1

)
and w2 =

(
1
−1

)
be the columns of P.

An = c1w1 +
c2
2n

w2.

When n is large, the second term disappears, so Anx approaches c1w1, which is
an eigenvector with eigenvalue 1 (assuming c1 6= 0).

So all vectors get “sucked into the 1-eigenspace,” which is spanned by w1 =
(
1
1

)
.



Diagonalizable Stochastic Matrices
Example, continued

Recall: An = PDnP−1 acts on the usual coordinates of v0 in the same way that
Dn acts on the B-coordinates, where B = {w1,w2}.

1-eigenspace1/2-eigenspace

w1

w2

v0
v1
v2
v3
v4

All vectors get “sucked into the 1-eigenspace.”



Diagonalizable Stochastic Matrices

The Red Box matrix A =

 .3 .4 .5
.3 .4 .3
.4 .2 .2

 is diagonalizable

A = P

 1 0 0
0 .1 0
0 0 −.2

P−1 = PDP−1.

Hence it is easy to compute the powers of A:

An = P

 1 0 0
0 (.1)n 0
0 0 (−.2)n

P−1 = PDnP−1.

Let w1,w2,w3 be the columns of P, i.e. the eigenvectors of P with respective
eigenvalues 1, .1,−.2. Let B = {w1,w2,w3}.

If w1,w2,w3 are the column vectors of P then

Anx = c1w1 + (.1)nc2w2 + (−.2)nc3w3 → c1w1



Diagonalizable Stochastic Matrices
Interpretation

If A is the Red Box matrix, and vn is the vector representing the number of
movies in the three locations on day n, then

vn+1 = Avn.

For any starting distribution v0 of videos in red boxes, after enough days, the
distribution v (= vn for n large) is an eigenvector with eigenvalue 1:

Av = v .

In other words, eventually the number of movies in each kiosk doesn’t change
much.

Moreover, we know exactly what v is: a multiple of w1

I The entries in v have to sum up to the number of intial movies (same sum
as entries in v0.

(Remember the total number of videos never changes.) Presumably, Red Box

really does have to do this kind of analysis to determine how many videos to
put in each box.



Find the actual Steady State w1
Red Box example

If one computes Nul(A− I ) and find that w ′ =

7
6
5


is an eigenvector with eigenvalue 1.

Then, to get a steady state, divide by 18 = 7 + 6 + 5 to get

w =
1

18

7
6
5

 ∼ (0.39, 0.33, 0.28).

So if you start with 100 total movies, eventually you’ll have
100w = (39, 33, 28) movies in the three locations, every day.

The long-run

Regardless of the intital location of a particular movie. Eventu-
ally, that movie will get ‘returned’ 39% of the times at location
1, 33% at location 2, and 28% at location 3.

The time spent on a state



Perron–Frobenius Theorem

These conclusions apply to any regular stochastic matrix—whether or not it is
diagonalizable!

If A is a regular stochastic matrix, then it admits a unique steady state
vector w , which spans the 1-eigenspace.

Moreover, for any vector v0 with entries summing to some number c,
the iterates v1 = Av0, v2 = Av1, . . . , vn = Avn−1, . . . , approach cw as
n gets large.

Perron–Frobenius Theorem

Translation:

I The 1-eigenspace of a regular stochastic matrix A is a line.

I The vector w has entries that sum to 1, and are strictly positive!

I Eventually, the movies arrange themselves according to the steady state
percentage, i.e., vn → cw .

(The sum c of the entries of v0 is the total number of movies)



Google’s PageRank

Internet searching in the 90’s was a pain. Yahoo or AltaVista would scan pages
for your search text, and just list the results with the most occurrences of those
words.

Not surprisingly, the more unsavory websites soon learned that by putting
popular words a million times in their pages, they could show up first on
popular searches.

Larry Page and Sergey Brin invented a way to rank pages by importance.
They founded Google based on their algorithm.

Here’s how it works. (roughly)

Reference:

http://www.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lecture3/lecture3.html

http://www.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lecture3/lecture3.html


Google’s PageRank: The Importance Rule

Each webpage has an associated importance, or rank. This is a positive
number.

If page P links to n other pages Q1,Q2, . . . ,Qn, then
each Qi should inherit 1

n
of P’s importance.

The Importance Rule

I A very important page links to your webpage: then your webpage is
important.

I A ton of unimportant pages link to your webpage: then it’s still important.

I But if only one crappy site links to yours, your page isn’t important.

A “random surfer” just randomly clicks on link after link.
The pages she spends the most time on should be the
most important. Stochastic terms: random walk on
the graph of hiperlinks. Look for steady-state vector!

Random surfer interpretation



The Importance Matrix

Consider the following Internet with only four pages. Links are indicated by
arrows.
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In terms of matrices, if v = (a, b, c, d) is the vector containing the ranks
a, b, c, d of the pages A,B,C ,D, then
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Importance Rule

importance
matrix: ij entry is
importance page j
passes to page i



The 25 Billion Dollar Eigenvector

Observations:

I The importance matrix is a stochastic matrix!

I The rank vector is an eigenvector with eigenvalue 1

Random surfer interpretation: If a random surfer has probability (a, b, c, d) to
be on page A,B,C ,D, respectively, then after clicking on a random link, the
probability he’ll be on each page is
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 .

The rank vector is a steady state for the importance matrix : it’s the
probability vector (a, b, c, d) such that, after clicking on a random link, the
random surfer will have the same probability of being on each page.

So, the important (high-ranked) pages are those where a random surfer will
end up most often.



Problems with the Importance Matrix
Dangling pages

Observation: the importance matrix is not regular: it’s only nonnegative.
So we can’t apply the Perron–Frobenius theorem. How does this cause
problems?

Consider the following Internet:

A

C

B

1

1

The importance matrix is

 0 0 0
0 0 0
1 1 0

. is not stochastic!

f (λ) = det

−λ 0 0
0 −λ 0
1 1 −λ

 = −λ3.

and 1 is not even an eigenvalue: there is no rank vector!



The Google Matrix (Page and Brin’s solution)

Fix p in (0, 1), called the damping factor. (A typical value is p = 0.15.)

The Google Matrix is

M = (1− p) · A + p · B where B =
1

N


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

 ,

N is the total number of pages, and A is the importance matrix.

I Random surfer interpretation: with probability p the surfer gets bored and
starts over on a completely random page.

The PageRank vector is the steady state for the Google Matrix.

Fact

This exists and has positive entries by the Perron–Frobenius theorem.
The hard part is calculating it: the Google matrix has 1 gazillion rows.


