Announcements

Tuesday, February 27

Written Assignment:Prioritize quality over quantity.

Setting: Representing a star-up, you are writing a report to a big company to offer your services. In 2-3 pages, cover the following issues:

- Give a $1 / 2$ page summary of the proposal targeted to a layman
- What is the problem of the company (be creative)
- What is your proposed solution
- Why does your solution works (technical background)
- How will you implement the solution

Suggested companies/projects:

- Pixar's 3D simulations, Urban Planning, Tracing the trayectory of Falcon 9

Grading Scheme:

1. Correctness: 4 pts
2. Clarity: 4pts
3. Creativity: 3pts

Deadline: Emailed in PDF by April 20th

Group Sizes: 3-4 persons

- Suggested sources: Sections
- 2.6,2.7,3.3,4.8,4.9,5.6,5.7,5.8, $6.4,6.6,6.8,7.5,10.1,10.3,10.4$
- Not exclusively Chapter 1

Application

Stochastic Matrices and PageRank

Stochastic Matrices

These arise very commonly in modeling of probabalistic phenomena (Markov chains), where they are also called transition matrices.

Some examples:

- Matrices from the population dynamics
- Matrices from the equilibrium-prices economies

Definition

A square matrix A is stochastic if all of its entries are nonnegative, and the sum of the entries of each column is 1 .
We say A is regular if, for some k, all entries of A^{k} are positive.

Definition

A steady-state vector v of A is a non-zero vector with entries summing to 1 and such that $A v=v$.

Random walks on graphs (a.k.a Mouse on a maze)

A mouse moves freely between rooms $/$ states $=$ selects any with equal probability.

$$
P=\left[\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
0 & 1 / 3 & 1 / 4 & 0 & 0 & 0 & 0 \\
1 / 2 & 0 & 1 / 4 & 0 & 1 / 2 & 0 & 0 \\
1 / 2 & 1 / 3 & 0 & 1 & 0 & 1 / 3 & 0 \\
0 & 0 & 1 / 4 & 0 & 0 & 0 & 0 \\
0 & 1 / 3 & 0 & 0 & 0 & 1 / 3 & 0 \\
0 & 0 & 1 / 4 & 0 & 1 / 2 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 / 3 & 0
\end{array}\right] \begin{aligned}
& 1 \\
& 2 \\
& 7
\end{aligned}
$$

$$
P=\left[\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
0 & 1 / 3 & 1 / 4 & 0 & 0 \\
1 / 2 & 0 & 1 / 4 & 1 / 3 & 0 \\
1 / 2 & 1 / 3 & 0 & 1 / 3 & 1 / 2 \\
0 & 1 / 3 & 1 / 4 & 0 & 1 / 2 \\
0 & 0 & 1 / 4 & 1 / 3 & 0
\end{array}\right] \begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5
\end{aligned}
$$

- Initial state: The mouse is located at some room i : probabilities

$$
v_{0}=\left(x_{1},!, x_{5}\right) .
$$

- Probability mouse starts at room 1 is x_{1} item Transition matrix: $v_{n+1}=A v_{n}$ means that A dictates how probabilities change.
- Probability mouse is at room 3 after n steps of the walk: third entry of v_{n}.

Non-regular transition matrix

Disconnected states

Consider the following 'transition graph':

The transition matrix is $\left(\begin{array}{ccccc}0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0\end{array}\right)$.
Both $\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 1 \\ 1\end{array}\right)$, are eigenvectors with eigenvalue 1.
So there is more than one steady-state vector!

Stochastic Matrices and Difference Equations

Through an example

Red Box has kiosks all over where you can rent movies. You can return them to any other kiosk.

- ij entry of A: probability that a movie rented from location j is returned to location i.

For example, if there are three locations, maybe

$$
A=\left(\begin{array}{lll}
.3 & .4 & .5 \\
.3 & .4 & .3 \\
.4 & .2 & .2
\end{array}\right) . \quad \begin{aligned}
& 30 \% \text { probability a movie rented } \\
& \text { from location } 3 \text { gets returned } \\
& \text { to location } 2
\end{aligned}
$$

On day $n: x_{n}, y_{n}, z_{n}$ are the numbers of movies in locations $1,2,3$, respectively, and $v_{n}=\left(x_{n}, y_{n}, z_{n}\right)$.

Probabilistic Intuition

If at opening day the movies are distributed according to v_{0} then, on average:

$$
v_{n}=A v_{n-1}=A^{2} v_{n-2}=\cdots=A^{n} v_{0}
$$

Eigenvalues of Stochastic Matrices

Fact: 1 is an eigenvalue of a stochastic matrix.
Why? If A is stochastic, then 1 is an eigenvalue of A^{T} :

$$
\left(\begin{array}{lll}
.3 & .3 & .4 \\
.4 & .4 & .2 \\
.5 & .3 & .2
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=1 \cdot\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

Lemma
A and A^{T} have the same eigenvalues.
Proof: $\operatorname{det}(A-\lambda I)=\operatorname{det}\left((A-\lambda I)^{T}\right)=\operatorname{det}\left(A^{T}-\lambda I\right)$, so they have the same characteristic polynomial.
Note: This doesn't give a new procedure for finding an eigenvector with eigenvalue 1 ; it only shows one exists.

Stonger fact: if $\lambda \neq 1$ is an eigenvalue of a regular stochastic matrix, then $|\lambda|<1$.

Eigenvalues of Stochastic Matrices

Continued

So: If λ is an eigenvalue of A then it is an eigenvalue of A^{T}.

$$
\text { eigenvector } v=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \quad \lambda v=A^{T} v \Longrightarrow \lambda x_{j}=\sum_{i=1}^{n} a_{i j} x_{i} \text {. }
$$

Choose x_{j} with the largest absolute value, so $\left|x_{i}\right| \leq\left|x_{j}\right|$ for all i.

$$
|\lambda| \cdot\left|x_{j}\right|=\left|\sum_{i=1}^{n} a_{i j} x_{i}\right| \leq \sum_{i=1}^{n} a_{i j} \cdot\left|x_{i}\right| \leq \sum_{i=1}^{\text {positive }} a_{i j} \cdot\left|x_{j}\right|=1 \cdot\left|x_{j}\right|
$$

so $|\lambda| \leq 1$.
Conclusion: if $\lambda \neq 1$ is an eigenvalue of a stochastic matrix with all entries positive, then $|\lambda|<1$. This proof is adapted for regular matrices.

Dynamical systems
Except for the 1-eigenspace, all the others are shriking! What happens in the long run?

Diagonalizable Stochastic Matrices

Example from $\S 5.3$

Let $A=\left(\begin{array}{cc}3 / 4 & 1 / 4 \\ 1 / 4 & 3 / 4\end{array}\right)$. This is a regular stochastic matrix.
We saw last time that A is diagonalizable:

$$
A=P D P^{-1} \quad \text { for } \quad P=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \quad D=\left(\begin{array}{cc}
1 & 0 \\
0 & 1 / 2
\end{array}\right)
$$

Change of basis: Let $w_{1}=\binom{1}{1}$ and $w_{2}=\binom{1}{-1}$ be the columns of P.

$$
A^{n}=c_{1} w_{1}+\frac{c_{2}}{2^{n}} w_{2}
$$

When n is large, the second term disappears, so $A^{n} x$ approaches $c_{1} w_{1}$, which is an eigenvector with eigenvalue 1 (assuming $c_{1} \neq 0$).
So all vectors get "sucked into the 1-eigenspace," which is spanned by $w_{1}=\binom{1}{1}$.

Diagonalizable Stochastic Matrices

Example, continued

Recall: $A^{n}=P D^{n} P^{-1}$ acts on the usual coordinates of v_{0} in the same way that D^{n} acts on the \mathcal{B}-coordinates, where $\mathcal{B}=\left\{w_{1}, w_{2}\right\}$.

All vectors get "sucked into the 1-eigenspace."

Diagonalizable Stochastic Matrices

The Red Box matrix $A=\left(\begin{array}{ccc}.3 & .4 & .5 \\ .3 & .4 & .3 \\ .4 & .2 & .2\end{array}\right)$ is diagonalizable

$$
A=P\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & .1 & 0 \\
0 & 0 & -.2
\end{array}\right) P^{-1}=P D P^{-1}
$$

Hence it is easy to compute the powers of A :

$$
A^{n}=P\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & (.1)^{n} & 0 \\
0 & 0 & (-.2)^{n}
\end{array}\right) P^{-1}=P D^{n} P^{-1}
$$

Let w_{1}, w_{2}, w_{3} be the columns of P, i.e. the eigenvectors of P with respective eigenvalues $1, .1,-.2$. Let $\mathcal{B}=\left\{w_{1}, w_{2}, w_{3}\right\}$.
If w_{1}, w_{2}, w_{3} are the column vectors of P then

$$
A^{n} x=c_{1} w_{1}+(.1)^{n} c_{2} w_{2}+(-.2)^{n} c_{3} w_{3} \rightarrow c_{1} w_{1}
$$

Diagonalizable Stochastic Matrices

If A is the Red Box matrix, and v_{n} is the vector representing the number of movies in the three locations on day n, then

$$
v_{n+1}=A v_{n}
$$

For any starting distribution v_{0} of videos in red boxes, after enough days, the distribution $v\left(=v_{n}\right.$ for n large) is an eigenvector with eigenvalue 1 :

$$
A v=v
$$

In other words, eventually the number of movies in each kiosk doesn't change much.

Moreover, we know exactly what v is: a multiple of w_{1}

- The entries in v have to sum up to the number of intial movies (same sum as entries in v_{0}.
(Remember the total number of videos never changes.) Presumably, Red Box really does have to do this kind of analysis to determine how many videos to put in each box.

Find the actual Steady State w_{1}

Red Box example

If one computes $\operatorname{Nul}(A-I)$ and find that $w^{\prime}=\left(\begin{array}{l}7 \\ 6 \\ 5\end{array}\right)$
is an eigenvector with eigenvalue 1 .
Then, to get a steady state, divide by $18=7+6+5$ to get

$$
w=\frac{1}{18}\left(\begin{array}{l}
7 \\
6 \\
5
\end{array}\right) \sim(0.39,0.33,0.28)
$$

The long-run
So if you start with 100 total movies, eventually you'll have $100 w=(39,33,28)$ movies in the three locations, every day.

The time spent on a state

Regardless of the intital location of a particular movie. Eventually, that movie will get 'returned' 39% of the times at location $1,33 \%$ at location 2 , and 28% at location 3.

Perron-Frobenius Theorem

These conclusions apply to any regular stochastic matrix-whether or not it is diagonalizable!

Perron-Frobenius Theorem

If A is a regular stochastic matrix, then it admits a unique steady state vector w, which spans the 1-eigenspace.
Moreover, for any vector v_{0} with entries summing to some number c, the iterates $v_{1}=A v_{0}, v_{2}=A v_{1}, \ldots, v_{n}=A v_{n-1}, \ldots$, approach $c w$ as n gets large.

Translation:

- The 1-eigenspace of a regular stochastic matrix A is a line.
- The vector w has entries that sum to 1 , and are strictly positive!
- Eventually, the movies arrange themselves according to the steady state percentage, i.e., $v_{n} \rightarrow c w$.
(The sum c of the entries of v_{0} is the total number of movies)

Google's PageRank

Internet searching in the 90 's was a pain. Yahoo or AltaVista would scan pages for your search text, and just list the results with the most occurrences of those words.

Not surprisingly, the more unsavory websites soon learned that by putting popular words a million times in their pages, they could show up first on popular searches.

Larry Page and Sergey Brin invented a way to rank pages by importance.
They founded Google based on their algorithm.
Here's how it works. (roughly)

Reference:

Google's PageRank: The Importance Rule

Each webpage has an associated importance, or rank. This is a positive number.

The Importance Rule
If page P links to n other pages $Q_{1}, Q_{2}, \ldots, Q_{n}$, then each Q_{i} should inherit $\frac{1}{n}$ of P^{\prime} s importance.

- A very important page links to your webpage: then your webpage is important.
- A ton of unimportant pages link to your webpage: then it's still important.
- But if only one crappy site links to yours, your page isn't important.

Random surfer interpretation

A "random surfer" just randomly clicks on link after link. The pages she spends the most time on should be the most important. Stochastic terms: random walk on the graph of hiperlinks. Look for steady-state vector!

The Importance Matrix

Consider the following Internet with only four pages. Links are indicated by arrows.

In terms of matrices, if $v=(a, b, c, d)$ is the vector containing the ranks a, b, c, d of the pages A, B, C, D, then

Importance Rule

importance matrix: ij entry is importance page j passes to page i

$$
\left(\begin{array}{cccc}
0 & 0 & 1 & \frac{1}{2} \\
\frac{1}{3} & 0 & 0 & 0 \\
\frac{1}{3} & \frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{3} & \frac{1}{2} & 0 & 0
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)=\left(\begin{array}{c}
c+\frac{1}{2} d \\
\frac{1}{3} a \\
\frac{1}{3} a+\frac{1}{2} b+\frac{1}{2} d \\
\frac{1}{3} a+\frac{1}{2} b
\end{array}\right)=\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)
$$

The 25 Billion Dollar Eigenvector

Observations:

- The importance matrix is a stochastic matrix!
- The rank vector is an eigenvector with eigenvalue 1

Random surfer interpretation: If a random surfer has probability (a, b, c, d) to be on page A, B, C, D, respectively, then after clicking on a random link, the probability he'll be on each page is

$$
\left(\begin{array}{cccc}
0 & 0 & 1 & \frac{1}{2} \\
\frac{1}{3} & 0 & 0 & 0 \\
\frac{1}{3} & \frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{3} & \frac{1}{2} & 0 & 0
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)=\left(\begin{array}{c}
c+\frac{1}{2} d \\
\frac{1}{3} a \\
\frac{1}{3} a+\frac{1}{2} b+\frac{1}{2} d \\
\frac{1}{3} a+\frac{1}{2} b
\end{array}\right)
$$

The rank vector is a steady state for the importance matrix : it's the probability vector (a, b, c, d) such that, after clicking on a random link, the random surfer will have the same probability of being on each page.

So, the important (high-ranked) pages are those where a random surfer will end up most often.

Problems with the Importance Matrix

Dangling pages

Observation: the importance matrix is not regular: it's only nonnegative. So we can't apply the Perron-Frobenius theorem. How does this cause problems?

Consider the following Internet:

The importance matrix is $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 0\end{array}\right)$. is not stochastic!

$$
f(\lambda)=\operatorname{det}\left(\begin{array}{ccc}
-\lambda & 0 & 0 \\
0 & -\lambda & 0 \\
1 & 1 & -\lambda
\end{array}\right)=-\lambda^{3}
$$

and 1 is not even an eigenvalue: there is no rank vector!

The Google Matrix (Page and Brin's solution)

Fix p in $(0,1)$, called the damping factor. (A typical value is $p=0.15$.)
The Google Matrix is

$$
M=(1-p) \cdot A+p \cdot B \quad \text { where } \quad B=\frac{1}{N}\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 1
\end{array}\right) \text {, }
$$

N is the total number of pages, and A is the importance matrix.

- Random surfer interpretation: with probability p the surfer gets bored and starts over on a completely random page.

Fact

The PageRank vector is the steady state for the Google Matrix.

This exists and has positive entries by the Perron-Frobenius theorem.
The hard part is calculating it: the Google matrix has 1 gazillion rows.

