Section 1.3

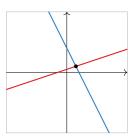
Vector Equations

Motivation

Linear algebra's two viewpoints:

- Algebra: systems of equations and their solution sets
- Geometry: intersections of points, lines, planes, etc.

$$\begin{array}{ccc}
x - 3y &= -3 \\
x + y &= 8
\end{array}$$

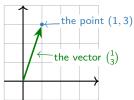


The **geometry** will give us *better insight into the properties* of systems of equations and their solution sets.

Vectors

Elements of Rⁿ can be considered *points*...

or **vectors**: arrows with a given *length and direction*.



x-coordinate: width of vector horizontally, y-coordinate: height of vector vertically.

It is *convenient* to express vectors in \mathbb{R}^n as matrices with n rows and one column:

$$v = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

Note: Some authors use **bold typography** for vectors: **v**.

Vector Algebra (applies to vectors in R^n)

Definition

▶ We can add two vectors together:

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} + \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a+x \\ b+y \\ c+z \end{pmatrix}.$$

▶ We can multiply, or scale, a vector by a real number:

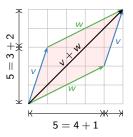
$$c\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} c \cdot x \\ c \cdot y \\ c \cdot z \end{pmatrix}.$$

Distinguish a vector from a real number: call c a scalar. $c\mathbf{v}$ is called a scalar multiple of \mathbf{v} .

For instance,

$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} = \begin{pmatrix} 5 \\ 7 \\ 9 \end{pmatrix} \quad \text{and} \quad -2 \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -2 \\ -4 \\ -6 \end{pmatrix}.$$

Addition: The parallelogram law



Geometrically, the sum of two vectors v,w is obtained by creating a parallelogram:

- 1. Place the tail of w at the head of v.
- 2. Sum vector $\mathbf{v} + \mathbf{w}$ has **tail**: tail of \mathbf{v}
- 3. Sum vector v + w has **head**: head of w

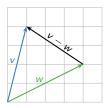
The width of v + w is the sum of the widths, and likewise with the heights. For example,

$$\begin{pmatrix} 1 \\ 3 \end{pmatrix} + \begin{pmatrix} 4 \\ 2 \end{pmatrix} = \begin{pmatrix} 5 \\ 5 \end{pmatrix}.$$

Note: addition is commutative.

Geometry of vector substraction

If you add $\mathbf{v} - \mathbf{w}$ to \mathbf{w} , you get \mathbf{v} .



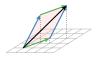
Geometrically, the difference of two vectors v,w is obtained as follows:

- 1. Place the tails of w and v at the same point.
- 2. Difference vector $\mathbf{v} \mathbf{w}$ has tail: head of \mathbf{w}
- 3. Difference vector $\mathbf{v} \mathbf{w}$ has **head**: head of \mathbf{v}

For example,

$$\begin{pmatrix} 1 \\ 4 \end{pmatrix} - \begin{pmatrix} 4 \\ 2 \end{pmatrix} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}.$$

This works in higher dimensions too!



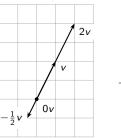
Towards "linear spaces"

Scalar multiples of a vector:

have the same direction but a different length.

The scalar multiples of v form a line.

Some multiples of v.



$$\mathbf{v} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$\mathbf{v} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
$$2\mathbf{v} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$$

$$-\frac{1}{2}\textbf{v}=\begin{pmatrix}-\frac{1}{2}\\-1\end{pmatrix}$$

$$0\mathbf{v} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

All multiples of v.

Linear Combinations

We can generate new vectors with addition and scalar multiplication:

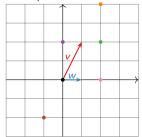
Definition

$$\mathbf{w} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_p \mathbf{v}_p$$

We call **w** a **linear combination** of the vectors v_1, v_2, \ldots, v_p , and the scalars c_1, c_2, \ldots, c_p are called the **weights** or **coefficients**.

- $ightharpoonup c_1, c_2, \ldots, c_p$ are scalars,
- $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ are vectors in \mathbf{R}^n , and so is \mathbf{w} .

Example



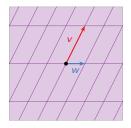
Let
$$v = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 and $w = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

What are some linear combinations of v and w?

- \triangleright v + w
- ▶ v w
- ▶ 2v + 0w
- ▶ 2w
- v

Poll Is there any vector in \mathbb{R}^2 that is not a linear combination of v and w?

No: in fact, every vector in \mathbf{R}^2 is a combination of v and w.



(The purple lines are to help measure how much of v and w you need to reach a given point.)

It will be important to handle all linear combinations of a set of vectors.

Definition

Let v_1, v_2, \ldots, v_p be vectors in \mathbb{R}^n . The span of v_1, v_2, \ldots, v_p is the collection of all linear combinations of v_1, v_2, \ldots, v_p , and is denoted Span $\{v_1, v_2, \ldots, v_p\}$. In symbols:

$$\mathsf{Span}\{v_1, v_2, \dots, v_p\} = \{x_1v_1 + x_2v_2 + \dots + x_pv_p \mid x_1, x_2, \dots, x_p \text{ in } \mathbf{R} \}.$$

In other words:

- ► Span $\{v_1, v_2, \dots, v_p\}$ is the subset spanned by or generated by v_1, v_2, \dots, v_p .
- it's exactly the *collection of all b in* \mathbb{R}^n such that the *vector equation* (unknowns x_1, x_2, \dots, x_p)

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \cdots + x_p\mathbf{v}_p = \mathbf{b}$$

is consistent i.e., has a solution.

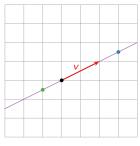
Poll Which of the following are possible shapes for the Span $\{\mathbf{v}_1, \mathbf{v}_2\}$ of 2 vectors in \mathbb{R}^3 ? Select all possible shapes!

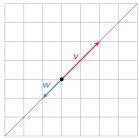
- A Empty
- B Point
- C Line
- D Circle
- E the grid points on a 2-plane
- F the 4-plane

Answer: B and C. (Span is never empty

and two vectors may span a 2-plane, but not only its grid points)

More Examples





What are some linear combinations of $v = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$?

- $ightharpoonup \frac{3}{2}V$
- $-\frac{1}{2}v$
- **•** ...

What are all linear combinations of v?

All vectors cv for c a real number. I.e., all <u>scalar</u> <u>multiples</u> of v. These form a <u>line</u>.

Question

What are all linear combinations of

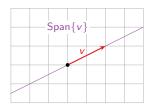
$$v = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$
 and $w = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$?

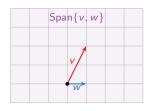
Answer: The line which contains both vectors.

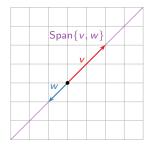
What's different about this example and the one on the poll?

Pictures of Span in R^2

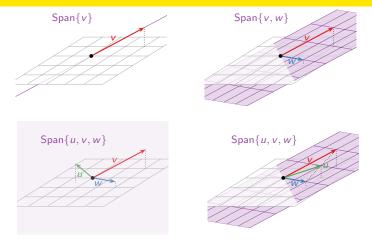
Drawing a picture of Span $\{v_1, v_2, \dots, v_p\}$ is the same as drawing a picture of all linear combinations of v_1, v_2, \dots, v_p .







Pictures of Span in R³



Important

Even if *intuition and a geometric feeling* of what Span represents is important for class. You **will use the definition** of Span to solve problems on the exams.

Systems of Linear Equations

Question

Is
$$\begin{pmatrix} 8 \\ 16 \\ 3 \end{pmatrix}$$
 a linear combination of $\begin{pmatrix} 1 \\ 2 \\ 6 \end{pmatrix}$ and $\begin{pmatrix} -1 \\ -2 \\ -1 \end{pmatrix}$?

This means: can we solve the equation

$$x \begin{pmatrix} 1 \\ 2 \\ 6 \end{pmatrix} + y \begin{pmatrix} -1 \\ -2 \\ -1 \end{pmatrix} = \begin{pmatrix} 8 \\ 16 \\ 3 \end{pmatrix}$$

where x and y are the unknowns (the coefficients)? Rewrite:

$$\begin{pmatrix} x \\ 2x \\ 6x \end{pmatrix} + \begin{pmatrix} -y \\ -2y \\ -y \end{pmatrix} = \begin{pmatrix} 8 \\ 16 \\ 3 \end{pmatrix} \quad \text{or} \quad \begin{pmatrix} x - y \\ 2x - 2y \\ 6x - y \end{pmatrix} = \begin{pmatrix} 8 \\ 16 \\ 3 \end{pmatrix}.$$

This is just a system of linear equations:

$$x - y = 8$$

$$2x - 2y = 16$$

$$6x - y = 3$$

Systems of Linear Equations

Systems of linear equations depend on the Span of a set of vectors!

Span of vectors and Linear equations

We have three equivalent ways to think about linear systems of equations:

Summary

Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p, \mathbf{b}$ be vectors in \mathbf{R}^n and x_1, x_2, \dots, x_p be scalars.

- 1. A vector **b** is in the span of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$.
- 2. The linear system with augmented matrix

$$\begin{pmatrix} | & | & & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_\rho & \mathbf{b} \\ | & | & & | & | \end{pmatrix},$$

is consistent (\mathbf{v}_i 's and \mathbf{b} are the columns).

3. The vector equation $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \cdots + x_p\mathbf{v}_p = \mathbf{b}$, has a solution.

Equivalent means that, for any given list of vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p, \mathbf{b}$, either all three statements are true, or all three statements are false.

Extra: So, what is Span?

How many vectors are in Span $\left\{ \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\}$?

A. Zero
B. One
C. Infinity

So far, it seems that $\mathsf{Span}\{v_1, v_2, \ldots, v_p\}$ is the smallest "linear space" (line, plane, etc.) containing **the origin** and all of the vectors v_1, v_2, \ldots, v_p .

We is made precise with 'vector subspace' definition.

Extra: Points and Vectors

So what is the difference between a point and a vector?

A vector need not start at the origin: *it can be located anywhere*! In other words, an arrow is determined by its length and its direction, not by its location.

These arrows all represent the vector $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

However, unless otherwise specified, we'll assume a vector starts at the origin: we'll usually be sloppy and identify the vector $\binom{1}{2}$ with the point (1,2).

This makes sense in the real world: many physical quantities, such as velocity, are represented as vectors. But it makes more sense to think of the velocity of a car as being located at the car.

Another way to think about it: a vector is a *difference* between two points, or the arrow from one point to another.

For instance, $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ is the arrow from (1,1) to (2,3).