Section 1.8

Introduction to Linear Transformations

Motivation

Let A be an $m \times n$ matrix. For $A x=b$ we can describe

- the solution set: all x in \mathbf{R}^{n} making the equation true.
- the column span: the set of all b in \mathbf{R}^{m} making the equation consistent.

It turns out these two sets are very closely related to each other.

Geometry matrices: linear transformation from \mathbf{R}^{n} to \mathbf{R}^{m}.

Transformations

Definition

A transformation (or function or map) from \mathbf{R}^{n} to \mathbf{R}^{m} is a rule T that assigns to each vector x in \mathbf{R}^{n} a vector $T(x)$ in \mathbf{R}^{m}.

- \mathbf{R}^{n} is called the domain of T (the inputs).
- \mathbf{R}^{m} is called the codomain of T (the outputs).
- For x in \mathbf{R}^{n}, the vector $T(x)$ in \mathbf{R}^{m} is the image of x under T.
- The set of all images $\left\{T(x) \mid x\right.$ in $\left.\mathbf{R}^{n}\right\}$ is the range of T.

Notation:

Functions from Calculus

Many of the functions you know have domain and codomain \mathbf{R}.

$$
\text { For example, } f: \mathbf{R} \longrightarrow \mathbf{R} \quad f(x)=x^{2}
$$

Often times we omit the name $f(x)$ of the function " x ".
You may be used to thinking of a function in terms of its graph. E.g.,

The horizontal axis is the domain, and the vertical axis is the codomain.

This is fine when the domain and codomain are \mathbf{R}, but it's hard to do when they're \mathbf{R}^{2} and \mathbf{R}^{3} ! You need five dimensions to draw that graph.

Matrix Transformations

Definition

Let A be an $m \times n$ matrix. The matrix transformation associated to A is the transformation

$$
T: \mathbf{R}^{n} \longrightarrow \mathbf{R}^{m} \quad \text { defined by } \quad T(x)=A x
$$

In other words, T takes the vector x in \mathbf{R}^{n} to the vector $A x$ in \mathbf{R}^{m}.

- The domain of T is \mathbf{R}^{n}, which is the number of columns of A.
- The codomain of T is \mathbf{R}^{m}, which is the number of rows of A.
- The range of T is the set of all images of T :

$$
T(x)=A x=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{n} \\
\mid & \mid & & \mid
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=x_{1} v_{1}+x_{2} v_{2}+\cdots+x_{n} v_{n}
$$

This is the column span of A. It is a span of vectors in the codomain.

Matrix Transformations

Example

Let $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 1 & 1\end{array}\right)$ and let $T(x)=A x$, so $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$.

- If $u=\binom{3}{4}$ then $T(u)=\left(\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 1 & 1\end{array}\right)\binom{3}{4}=\left(\begin{array}{l}7 \\ 4 \\ 7\end{array}\right)$.
- Let $b=\left(\begin{array}{l}7 \\ 5 \\ 7\end{array}\right)$. Find v in \mathbf{R}^{2} such that $T(v)=b$. Is there more than one?

We want to find v such that $T(v)=A v=b$. We know how to do that:

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1 \\
1 & 1
\end{array}\right) v=\left(\begin{array}{l}
7 \\
5 \\
7
\end{array}\right) \underset{\substack{\text { matrix } \\
\text { mammu }}}{\substack{\text { augmented }}}\left(\begin{array}{ll|l}
1 & 1 & 7 \\
0 & 1 & 5 \\
1 & 1 & 7
\end{array}\right) \underset{\substack{\text { row } \\
\text { roduce }}}{\text { rown }}\left(\begin{array}{ll|l}
1 & 0 & 2 \\
0 & 1 & 5 \\
0 & 0 & 0
\end{array}\right) .
$$

This gives $x=2$ and $y=5$, or $v=\binom{2}{5}$ (unique). In other words,

$$
T(v)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1 \\
1 & 1
\end{array}\right)\binom{2}{5}=\left(\begin{array}{l}
7 \\
5 \\
7
\end{array}\right)
$$

Matrix Transformations

Let $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 1 & 1\end{array}\right)$ and let $T(x)=A x$, so $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$.

- Is there any c in \mathbf{R}^{3} such that there is more than one v in \mathbf{R}^{2} with $T(v)=c$?
Translation: is there any c in \mathbf{R}^{3} such that the solution set of $A x=c$ has more than one vector v in it?
The solution set of $A x=c$ is a translate of the solution set of $A x=b$ (from before), which has one vector in it.
So the solution set to $A x=c$ has only one vector.
So no!
- Find c such that there is no v with $T(v)=c$.

Translation: Find c such that $A x=c$ is inconsistent.
In other words, find c not in the column span of A (i.e., the range of T).
We could draw a picture, or notice: $a\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)+b\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)=\left(\begin{array}{c}a+b \\ b \\ a+b\end{array}\right)$.
Anything in the column span has the same first and last coordinate.
So $c=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ is not in the column span (for example).

Matrix Transformations

Projection

Let $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ and let $T(x)=A x$, so $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$. Then

$$
T\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
x \\
y \\
0
\end{array}\right) .
$$

This is projection onto the $x y$-axis. Picture:

Matrix Transformations
Reflection

$$
\text { Let } A=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \text { and let } T(x)=A x \text {, so } T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2} \text {. Then }
$$

$$
T\binom{x}{y}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\binom{x}{y}=\binom{-x}{y}
$$

This is reflection over the y-axis. Picture:

Linear Transformations

Recall: If A is a matrix, u, v are vectors, and c is a scalar, then

$$
A(u+v)=A u+A v \quad A(c v)=c A v
$$

So if $T(x)=A x$ is a matrix transformation then,

$$
T(u+v)=T(u)+T(v) \quad \text { and } \quad T(c u)=c T(u)
$$

Definition

A transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is linear if it satisfies the above equations for all vectors u, v in \mathbf{R}^{n} and all scalars c.
In other words, T "respects" addition and scalar multiplication.
Check: if T is linear, then

$$
T(0)=0 \quad T(c u+d v)=c T(u)+d T(v)
$$

for all vectors u, v and scalars c, d.
More generally, (in engineering this is called superposition)

$$
T\left(c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}\right)=c_{1} T\left(v_{1}\right)+c_{2} T\left(v_{2}\right)+\cdots+c_{n} T\left(v_{n}\right)
$$

Linear Transformations

Dilation

Define $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ by $T(x)=1.5 x$. Is T linear? Check:

$$
\begin{aligned}
T(u+v) & =1.5(u+v)=1.5 u+1.5 v=T(u)+T(v) \\
T(c v) & =1.5(c v)=c(1.5 v)=c(T v)
\end{aligned}
$$

So T satisfies the two equations, hence T is linear.
This is called dilation or scaling (by a factor of 1.5). Picture:

Linear Transformations

Define $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ by $T\binom{x}{y}=\binom{-y}{x}$. Is T linear? Check:

$$
\begin{aligned}
T\left(\binom{u_{1}}{u_{2}}+\binom{v_{1}}{v_{2}}\right) & =\binom{-u_{2}}{u_{1}}+\binom{-v_{2}}{v_{1}}=\binom{-\left(u_{2}+v_{2}\right)}{\left(u_{1}+v_{1}\right)}=T\binom{u_{1}+u_{2}}{v_{1}+v_{2}} \\
T\left(c\binom{v_{1}}{v_{2}}\right) & =T\binom{c v_{1}}{c v_{2}}=\binom{-c v_{2}}{c v_{1}}=c\binom{-v_{2}}{v_{1}}=c T\binom{v_{1}}{v_{2}} .
\end{aligned}
$$

So T satisfies the two equations, hence T is linear.
This is called rotation (by 90°). Picture:

$$
\begin{aligned}
T\binom{1}{2} & =\binom{-2}{1} \\
T\binom{-1}{1} & =\binom{-1}{-1} \\
T\binom{0}{-2} & =\binom{2}{0}
\end{aligned}
$$

