
Section 1.9

The Matrix of a Linear Transformation



Unit Coordinate Vectors

Definition

The unit coordinate vectors in Rn are
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This is what e1, e2, . . . mean,

for the rest of the class.
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in R2 in R3
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Important: if A is an m ⇥ n matrix with columns v1, v2, . . . , vn, then Aei = vi
for i = 1, 2, . . . , n: the transformation T (x) = Ax sends ei to vector vi .
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Recap: Linear Transformations

Recall: If A is a matrix, u, v are vectors, and c is a scalar, then

A(u + v) = Au + Av A(cv) = cAv .

So if T (x) = Ax is a matrix transformation then,

T (u+v) = T (u)+T (v) and T (cu) = cT (u)

Definition

A transformation T : Rn ! Rm is linear if it satisfies the above equations for all
vectors u, v in Rn and all scalars c.

In other words, T “respects” addition and scalar multiplication.

More generally, (in engineering this is called superposition)

T
�
c1v1 + c2v2 + · · ·+ cnvn

�
= c1T (v1) + c2T (v2) + · · ·+ cnT (vn).

So that unit coordinate vectors determine where all vectors in Rn get mapped
to in Rm.



Linear Transformations are Matrix Transformations

Theorem

Let T : Rn ! Rm be a linear transformation. Let
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This is an m ⇥ n matrix, and T is the matrix transformation for A: T (x) = Ax .

The matrix A is called the standard matrix for T .

A linear transformation may not be given a priori
as a matrix transformation

but linear transformations are the same as matrix transformations.

Take-Away

Dictionary

Linear transformation
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Linear Transformations: Dilation

Before, we defined a dilation transformation T : R2 ! R2 by T (x) = 1.5x .
What is its standard matrix?
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Linear Transformations: Reflexion/Projection

Construction Phase 1

Question

What is the matrix for the linear transformation T : R3 ! R3 that reflects
through the xy -plane and then projects onto the yz-plane?
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Linear Transformations: Reflexion/Projection

Construction Phase 2

Question

What is the matrix for the linear transformation T : R3 ! R3 that reflects
through the xy -plane and then projects onto the yz-plane?
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Linear Transformations: Reflexion/Projection

Construction Phase 3

Question

What is the matrix for the linear transformation T : R3 ! R3 that reflects
through the xy -plane and then projects onto the yz-plane?
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Linear Transformations: Reflexion/Projection

Resulting matrix

Question

What is the matrix for the linear transformation T : R3 ! R3 that reflects
through the xy -plane and then projects onto the yz-plane?
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Linear Transformations: Rotation

Question

What is the matrix for the linear transformation T : R2 ! R2 defined by

T (x) = x rotated counterclockwise by an angle ✓?
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Other Geometric Transformations

There is a long list of geometric transformations of R2 in
§1.9 of Lay. (Reflections over the diagonal, contractions
and expansions along di↵erent axes, shears, projections, . . . )
Please look them over.



Onto Transformations

Definition

A transformation T : Rn ! Rm is onto (or surjective) if the range of T is
equal to Rm (its codomain). In other words, each b in Rm is the image of at
least one x in Rn: every possible output has an input. Note that not onto
means there is some b in Rm which is not the image of any x in Rn.
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Characterization of Onto Transformations

Theorem

Let T : Rn ! Rm be a linear transformation with matrix A. Then the following
are equivalent:

I T is onto

I T (x) = b has a solution for every b in Rm

I Ax = b is consistent for every b in Rm

I A has a pivot in every row

I The columns of A span Rm

Question

If T : Rn ! Rm is onto, what can we say about the relative sizes of n and m?

Answer: A must have at least as many columns as rows (m  n) to have a
pivot in every row.
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One-to-one Transformations

Definition

A transformation T : Rn ! Rm is one-to-one (or into, or injective) if di↵erent
vectors in Rn map to di↵erent vectors in Rm. In other words, each b in Rm is
the image of at most one x in Rn: di↵erent inputs have di↵erent outputs.
Note that not one-to-one means di↵erent vectors in Rn have the same image.
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Characterization of One-to-One Transformations

Theorem

Let T : Rn ! Rm be a linear transformation with matrix A. Then the following
are equivalent:

I T is one-to-one

I T (x) = b has one or zero solutions for every b in Rm

I Ax = b has a unique solution or is inconsistent for every b in Rm

I Ax = 0 has a unique solution

I A has a pivot in every column.

I The columns of A are linearly independent

Question

If T : Rn ! Rm is one-to-one, what can we say about the relative sizes of n and
m?

Answer: A must have at least as many rows as columns (n  m) to have a
pivot in every column.0
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Extra: Linear Transformations are Matrix Transformations

Recap

Why is a linear transformation a matrix transformation?

Suppose for simplicity that T : R3 ! R2.

T

0

@
x
y
z

1

A = T

0

@x

0

@
1
0
0

1

A+ y

0

@
0
1
0

1

A+ z

0

@
0
0
1

1

A

1

A

= T
�
xe1 + ye2 + ze3

�

= xT (e1) + yT (e2) + zT (e3)

=

0

@
| | |

T (e1) T (e2) T (e3)
| | |

1

A

0

@
x
y
z

1

A

= A

0

@
x
y
z

1

A .


