Section 2.3

Characterization of Invertible Matrices

Invertible Transformations

Definition

A transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ is invertible if there exists $U : \mathbb{R}^n \to \mathbb{R}^n$ such that for all x in \mathbb{R}^n

$$T \circ U(x) = x$$
 and $U \circ T(x) = x$.

In this case we say U is the inverse of T, and we write $U = T^{-1}$.

In other words, T(U(x)) = x, so T "undoes" U, and likewise U "undoes" T.

Fact A transformation *T* is invertible if and only if *it is both one-to-one and onto*.

This means for every y in \mathbb{R}^n , there is a unique x in \mathbb{R}^n such that T(x) = y. Therefore we can define $T^{-1}(y) = x$.

Invertible Transformations

Examples

 T^{-1} is *clockwise* rotation by 45°.

Let T = shrinking by a factor of 2/3 in the plane. What is T^{-1} ?

 T^{-1} is *stretching* by 3/2.

Invertible Linear Transformations

Let $T: \mathbf{R}^n \to \mathbf{R}^n$ be an invertible linear transformation with matrix A.

Let B be the matrix for T^{-1} . We know $T \circ T^{-1}$ has matrix AB, so for all x,

$$ABx = T \circ T^{-1}(x) = x.$$

Hence $AB = I_n$, that is $B = A^{-1}$ (This is why we define matrix inverses).

Fact If *T* is an invertible linear transformation with matrix *A*, then T^{-1} is an invertible linear transformation with matrix A^{-1} .

Non-invertibility: E.g. let T = projection onto the x-axis. What is T^{-1} ? *It is not invertible*: you can't undo it.

It's corresponding matrix
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 is not invertible!

Invertible transformations Example 1

Let T = shrinking by a factor of 2/3 in the plane. Its matrix is

$$A = \begin{pmatrix} 2/3 & 0 \\ 0 & 2/3 \end{pmatrix}$$

Then $T^{-1} = stretching$ by 3/2. Its matrix is

$$B = \begin{pmatrix} 3/2 & 0 \\ 0 & 3/2 \end{pmatrix}$$

Check:

$$AB = \begin{pmatrix} 2/3 & 0 \\ 0 & 2/3 \end{pmatrix} \begin{pmatrix} 3/2 & 0 \\ 0 & 3/2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \checkmark$$

The matrix corresponding to $T \circ T^{-1}$ is *AB*, which satisfies (AB)x = xNote: the matrix corresponding to $T^{-1} \circ T$ is *BA*, also satisfies (BA)x = x

Invertible transformations Example 2

Let T = counterclockwise rotation in the plane by 45°. Its matrix is $A = \begin{pmatrix} \cos(45^\circ) & -\sin(45^\circ) \\ \sin(45^\circ) & \cos(45^\circ) \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}.$

Then
$$T^{-1} = \text{counterclockwise } \frac{\text{rotation by } -45^{\circ}}{\text{sin}(-45^{\circ})}$$
. Its matrix is

$$B = \begin{pmatrix} \cos(-45^{\circ}) & -\sin(-45^{\circ}) \\ \sin(-45^{\circ}) & \cos(-45^{\circ}) \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}.$$

Check:

$$AB = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$BA = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

The matrix corresponding to $T \circ T^{-1}$ is *AB*, which satisfies (AB)x = x Note: the matrix corresponding to $T^{-1} \circ T$ is *BA*, also satisfies (BA)x = x The Invertible Matrix Theorem

Let A be an $n \times n$ matrix, and let $T : \mathbb{R}^n \to \mathbb{R}^n$ be defined by T(x) = Ax. The following statements are equivalent.

- 1. A is invertible.
- 2. T is invertible.
- 3. T is one-to-one.
- 4. T is onto.
- 5. A has a left inverse (there exists B such that $BA = I_n$).
- 6. A has a right inverse (there exists B such that $AB = I_n$).
- 7. A^{T} is invertible.
- 8. A is row equivalent to I_n .
- 9. A has n pivots (one on each column and row).
- 10. The columns of A are linearly independent.
- 11. Ax = 0 has only the trivial solution.
- 12. The columns of A span \mathbf{R}^n .
- 13. Ax = b is consistent for all b in \mathbf{R}^n .

As with all Equivalence theorems:

- For invertible matrices: all statements of the Invertible Matrix Theorem are true.
- ► For non-invertible matrices: *all statements* of the Invertible Matrix Theorem *are false*.

- Tackle the assertions!

You know enough at this point to be able to *reduce all* of the statements *to assertions about the pivots* of a square matrix.

Strong recommendation: If you want to understand invertible matrices, go through all of the conditions of the IMT and *try to figure out on your own* why they're all equivalent.