Section 2.3

Characterization of Invertible Matrices

Invertible Transformations

Definition

A transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is invertible if there exists $U: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ such that for all x in \mathbf{R}^{n}

$$
T \circ U(x)=x \quad \text { and } \quad U \circ T(x)=x
$$

In this case we say U is the inverse of T, and we write $U=T^{-1}$.
In other words, $T(U(x))=x$, so T "undoes" U, and likewise U "undoes" T.

Fact

A transformation T is invertible if and only if it is both one-to-one and onto.

This means for every y in \mathbf{R}^{n}, there is a unique x in \mathbf{R}^{n} such that $T(x)=y$.
Therefore we can define $T^{-1}(y)=x$.

Invertible Transformations

Examples
Let $T=$ counterclockwise rotation in the plane by 45°. What is T^{-1} ?

T^{-1} is clockwise rotation by 45°.
Let $T=$ shrinking by a factor of $2 / 3$ in the plane. What is T^{-1} ?

T^{-1} is stretching by $3 / 2$.

Invertible Linear Transformations

Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be an invertible linear transformation with matrix A.
Let B be the matrix for T^{-1}. We know $T \circ T^{-1}$ has matrix $A B$, so for all x,

$$
A B x=T \circ T^{-1}(x)=x
$$

Hence $A B=I_{n}$, that is $B=A^{-1}$ (This is why we define matrix inverses).

Fact

If T is an invertible linear transformation with matrix A, then
T^{-1} is an invertible linear transformation with matrix A^{-1}.

Non-invertibility: E.g. let $T=$ projection onto the x-axis. What is T^{-1} ? It is not invertible: you can't undo it.
It's corresponding matrix $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ is not invertible!

Invertible transformations

Example 1

Let $T=$ shrinking by a factor of $2 / 3$ in the plane. Its matrix is

$$
A=\left(\begin{array}{cc}
2 / 3 & 0 \\
0 & 2 / 3
\end{array}\right)
$$

Then $T^{-1}=$ stretching by $3 / 2$. Its matrix is

$$
B=\left(\begin{array}{cc}
3 / 2 & 0 \\
0 & 3 / 2
\end{array}\right)
$$

Check:

$$
A B=\left(\begin{array}{cc}
2 / 3 & 0 \\
0 & 2 / 3
\end{array}\right)\left(\begin{array}{cc}
3 / 2 & 0 \\
0 & 3 / 2
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

The matrix corresponding to $T \circ T^{-1}$ is $A B$, which satisfies $(A B) x=x$
Note: the matrix corresponding to $T^{-1} \circ T$ is $B A$, also satisfies $(B A) x=x$

Invertible transformations

Example 2

Let $T=$ counterclockwise rotation in the plane by 45°. Its matrix is

$$
A=\left(\begin{array}{cc}
\cos \left(45^{\circ}\right) & -\sin \left(45^{\circ}\right) \\
\sin \left(45^{\circ}\right) & \cos \left(45^{\circ}\right)
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right) .
$$

Then $T^{-1}=$ counterclockwise rotation by -45°. Its matrix is

$$
B=\left(\begin{array}{cc}
\cos \left(-45^{\circ}\right) & -\sin \left(-45^{\circ}\right) \\
\sin \left(-45^{\circ}\right) & \cos \left(-45^{\circ}\right)
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right) .
$$

Check:

$$
\begin{aligned}
& A B=\frac{1}{2}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& B A=\frac{1}{2}\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

The matrix corresponding to $T \circ T^{-1}$ is $A B$, which satisfies $(A B) x=x$ Note: the matrix corresponding to $T^{-1} \circ T$ is $B A$, also satisfies $(B A) x=x$

The Really Big Theorem for Square Matrices of Math 1553

The Invertible Matrix Theorem
Let A be an $n \times n$ matrix, and let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be defined by $T(x)=A x$. The following statements are equivalent.

1. A is invertible.
2. T is invertible.
3. T is one-to-one.
4. T is onto.
5. A has a left inverse (there exists B such that $B A=I_{n}$).
6. A has a right inverse (there exists B such that $A B=I_{n}$).
7. A^{T} is invertible.
8. A is row equivalent to I_{n}.
9. A has n pivots (one on each column and row).
10. The columns of A are linearly independent.
11. $A x=0$ has only the trivial solution.
12. The columns of A span \mathbf{R}^{n}.
13. $A x=b$ is consistent for all b in \mathbf{R}^{n}.

Approach to The Invertible Matrix Theorem

As with all Equivalence theorems:

- For invertible matrices: all statements of the Invertible Matrix Theorem are true.
- For non-invertible matrices: all statements of the Invertible Matrix Theorem are false.

Tackle the assertions!
You know enough at this point to be able to reduce all of the statements to assertions about the pivots of a square matrix.

Strong recommendation: If you want to understand invertible matrices, go through all of the conditions of the IMT and try to figure out on your own why they're all equivalent.

