
Section 5.2

The Characteristic Equation



The Characteristic Polynomial

Last section we learn that for a square matrix A:

λ is an eigenvalue of A ⇐⇒ Ax = λx has a nontrivial solution

⇐⇒ (A− λI )x = 0 has a nontrivial solution

⇐⇒ A− λI is not invertible

⇐⇒ det(A− λI ) = 0.

The eigenvalues of A are the roots of det(A − λI ) ,
which is the characteristic polynomial of A.

Compute Eigenvalues

Definition
Let A be a square matrix. The characteristic polynomial of A is

f (λ) = det(A− λI ).

The characteristic equation of A is the equation

f (λ) = det(A− λI ) = 0.



The Characteristic Polynomial
Example

Question: What are the eigenvalues of

A =

(
5 2
2 1

)
?

Answer: First we find the characteristic polynomial:

f (λ) = det(A− λI ) = det

[(
5 2
2 1

)
−
(
λ 0
0 λ

)]
= det

(
5− λ 2

2 1− λ

)
= (5− λ)(1− λ)− 2 · 2

= λ2 − 6λ+ 1.

The eigenvalues are the roots of the characteristic polynomial, which we can
find using the quadratic formula:

λ =
6±
√

36− 4

2
= 3± 2

√
2.



The Characteristic Polynomial
Example

Definition
The trace of a square matrix A is Tr(A) = sum of the diagonal entries of A.

What do you notice about: the characteristic polynomial of A =

(
a b
c d

)
?

Answer:

det(A− λI ) = det

(
a− λ b
c d − λ

)
= (a− λ)(d − λ)− bc

= λ2 − (a + d)λ+ (ad − bc)

I The coefficient of λ is the trace of A and the constant term is det(A).

I Recall that A is not invertible if and only if λ = 0 is a root.

The characteristic polynomial of a 2× 2 matrix A is

f (λ) = λ2 − Tr(A)λ+ det(A).

Shortcut



The Characteristic Polynomial
Example

Question: What are the eigenvalues of the rabbit population matrix

A =

 0 6 8
1
2

0 0
0 1

2
0

?

Answer: First we find the characteristic polynomial:

f (λ) = det(A− λI ) = det

−λ 6 8
1
2
−λ 0

0 1
2
−λ


= 8

(
1

4
− 0 · −λ

)
− λ

(
λ2 − 6 · 1

2

)
= −λ3 + 3λ+ 2.

Already know one eigenvalue is λ = 2, check : f (2) = −8 + 6 + 2 = 0.

Doing polynomial long division, we get:

−λ3 + 3λ+ 2

λ− 2
= −λ2 − 2λ− 1 = −(λ+ 1)2.

Hence f (λ) = −(λ+ 1)2(λ− 2) and so λ = −1 is also an eigenvalue.



Algebraic Multiplicity

Definition
The algebraic multiplicity of an eigenvalue λ is its multiplicity as a root of the
characteristic polynomial.

There is a geometric multiplicity notion, but this one is easier to work with.

Example

In the rabbit population matrix, f (λ) = −(λ− 2)(λ+ 1)2. The algebraic
multiplicities are

λ =

{
2 multiplicity 1,

−1 multiplicity 2

Example

In the matrix

(
5 2
2 1

)
, f (λ) = (λ− (3 + 2

√
2))(λ− (3− 2

√
2)). The

algebraic multiplicities are λ =

{
3 + 2

√
2 alg. multiplicity 1,

3− 2
√

2 alg. multiplicity 1



Multiplicities

Theorem
If A is an n × n matrix, the characteristic polynomial

f (λ) = det(A− λI )

is a polynomial of degree n, and its roots are the eigenvalues of A:

f (λ) = (−1)nλn + an−1λ
n−1 + an−2λ

n−2 + · · ·+ a1λ+ a0.

If you count the eigenvalues of A, with their algebraic multi-
plicities, depending on whether you allow complex eigenvalues,
you will get :

I Do allow complex numbers: Always n.

I Only real numbers: Always at most n, but sometimes less.

Complex numbers

This is because any degree-n polynomial has exactly n complex roots, counted
with multiplicity. Stay tuned!



Similarity

Definition
Two n× n matrices A and B are similar if there is an invertible n× n matrix C
such that

A = CBC−1.

C keeps record of a basis C = {v1, . . . , vn} of Rn.

B transforms the C-coordinates of x : B[x ]C = [Ax ]C in
the same way that A transforms the standard coordinates of x

The intuition

Why does it work?

I First, C = {v1, v2, . . . , vn} is a basis for Rn (C is invertible), so

w = c1v1 + c2v2 + cnvn = C [w ]C

I Using C-coordinates for any vector w , is [w ]C = C−1w .

I Then A = CBC−1 implies C−1A = BC−1. Using C-coordinates:

[Ax ]C = C−1(Ax) = B(C−1x) = B([x ]C).



Similarity
Example

A =

(
1 2
−1 4

)
B =

(
2 0
0 3

)
C =

(
2 1
1 1

)
=⇒ A = CBC−1.

What does B do geometrically? Scaling: x-direction by 2 and y -direction by 3.

B acting on the usual coordinates

2-eigenspace

3-eigenspace

e1
e2

x

y
Be1

Be2

Bx

By

B

Now A will do to the standard coordinates what

B does to the C-coordinates, where C =

{(
2
1

)
,

(
1
1

)}
.



From C-coordinates to standard coordinates

v1
v2

x

y

2-eigenspace

3-eigenspace

v1 =

(
2
1

)
v2 =

(
1
1

)
[x ]C =

(
1
1

)
x = v1 + v2 =

(
3
2

)
[y ]C =

(
−2
−1

)
y = − 2v1 − v2

=

(
−5
−3

)

vectors
in

C



A does to the usual coordinates what B does to the C-coordinates

Av1

Av2

Ax

Ay

2-eigenspace

3-eigenspace

Av1 = 2v1 =

(
4
2

)
Av2 = 3v2 =

(
3
3

)
B[x ]C =

(
2
3

)
= [Ax ]C

Ax = 2v1 + 3v2 =

(
7
5

)
B[y ]C =

(
−4
−3

)
= [Ay ]C

Ay = − 4v1 − 3v2

=

(
−11
−7

)

Check: Ax =

(
1 2
−1 4

)(
3
2

)
=

(
7
5

)
Ay =

(
1 2
−1 4

)(
−5
−3

)
=

(
−11
−7

)
"



Similar Matrices Have the Same Characteristic Polynomial

If A and B are similar,
then they have the same characteristic polynomial.

Consequence:
similar matrices have the same eigenvalues! Though dif-

ferent eigenvectors in general.

Fact

Why? Suppose A = CBC−1. We can show that det(A− λI ) = det(B − λI ).

A− λI = CBC−1 − λI

= CBC−1 − C(λI )C−1

= C(B − λI )C−1.

Therefore,

det(A− λI ) = det
(
C(B − λI )C−1)

= det(C) det(B − λI ) det(C−1)

= det(B − λI ),

because det(C−1) = det(C)−1.



Similarity Caveats

1. Matrices with the same eigenvalues need not be similar.
For instance, (

2 1
0 2

)
and

(
2 0
0 2

)
both only have the eigenvalue 2, but they are not similar.

2. Similarity is lost in row equivalence.
For instance, (

2 1
0 2

)
and

(
1 0
0 1

)
are row equivalent, but they have different eigenvalues.

Warning


