Section 5.3

Diagonalization

Motivation: Difference equations

Now do multiply matrices

Many real-word (linear algebra problems):

- Start with a given situation (v_{0}) and
- want to know what happens after some time (iterate a transformation):

$$
v_{n}=A v_{n-1}=\ldots=A^{n} v_{0}
$$

- Ultimate question: what happens in the long run (find v_{n} as $n \rightarrow \infty$)

Old Example

Recall our example about rabbit populations: using eigenvectors was easier than matrix multiplications, but...

- Taking powers of diagonal matrices is easy!
- Working with diagonalizable matrices is also easy.
- We need to use the eigenvalues and eigenvectors of the dynamics.

Powers of Diagonal Matrices

If D is diagonal

Then D^{n} is also diagonal, the diagonal entries of D^{n} are the nth powers of the diagonal entries of D

Example

$$
\begin{array}{cc}
D=\left(\begin{array}{cc}
2 & 0 \\
0 & 3
\end{array}\right) & M=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{3}
\end{array}\right), \\
D^{2}=\left(\begin{array}{cc}
4 & 0 \\
0 & 9
\end{array}\right) & M^{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1}{4} & 0 \\
0 & 0 & \frac{1}{9}
\end{array}\right), \\
\vdots & \vdots \\
D^{n}=\left(\begin{array}{cc}
2^{n} & 0 \\
0 & 3^{n}
\end{array}\right) & M^{n}=\left(\begin{array}{ccc}
(-1)^{n} & 0 & 0 \\
0 & \frac{1}{2^{n}} & 0 \\
0 & 0 & \frac{1}{3^{n}}
\end{array}\right) .
\end{array}
$$

Powers of Matrices that are Similar to Diagonal Ones

When is A is not diagonal?

Example

Let $A=\left(\begin{array}{cc}1 & 2 \\ -1 & 4\end{array}\right)$. Compute A^{n}. Using that

$$
A=P D P^{-1} \quad \text { where } \quad P=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right) \quad \text { and } \quad D=\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right)
$$

From the first expression:

$$
\begin{aligned}
& A^{2}=\left(P D P^{-1}\right)\left(P D P^{-1}\right)=P D\left(P^{-1} P\right) D P^{-1}=P D I D P^{-1}=P D^{2} P^{-1} \\
& A^{3}=\left(P D P^{-1}\right)\left(P D^{2} P^{-1}\right)=P D\left(P^{-1} P\right) D^{2} P^{-1}=P D I D^{2} P^{-1}=P D^{3} P^{-1}
\end{aligned}
$$

$$
A^{n}=P D^{n} P^{-1}
$$

Closed formula in terms of n : easy to compute
Plug in P and D :

$$
A^{n}=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
2^{n} & 0 \\
0 & 3^{n}
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right)=\left(\begin{array}{cc}
2^{n+1}-3^{n} & -2^{n+1}+2 \cdot 3^{n} \\
2^{n}-3^{n} & -2^{n}+2 \cdot 3^{n}
\end{array}\right)
$$

Diagonalizable Matrices

Definition

An $n \times n$ matrix A is diagonalizable if it is similar to a diagonal matrix:

$$
A=P D P^{-1} \quad \text { for } D \text { diagonal. }
$$

If $A=P D P^{-1}$ for $D=\left(\begin{array}{cccc}d_{11} & 0 & \cdots & 0 \\ 0 & d_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{n n}\end{array}\right)$ then
$A^{k}=P D^{k} P^{-1}=P\left(\begin{array}{cccc}d_{11}^{k} & 0 & \cdots & 0 \\ 0 & d_{22}^{k} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{n n}^{k}\end{array}\right) P^{-1}$.

So diagonalizable matrices are easy to raise to any power.

Diagonalization

The Diagonalization Theorem

An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.
In this case, $A=P D P^{-1}$ for

$$
P=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{n} \\
\mid & \mid & & \mid
\end{array}\right) \quad D=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right),
$$

where $v_{1}, v_{2}, \ldots, v_{n}$ are linearly independent eigenvectors, and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the corresponding eigenvalues (in the same order).

Important

- If A has n distinct eigenvalues then A is diagonalizable. Fact 2 in 5.1 lecture notes: eigenvectors with distinct eigenvalues are always linearly independent.
- If A is diagonalizable matrix it need not have n distinct eigenvalues though.

Diagonalization

Example

Problem: Diagonalize $A=\left(\begin{array}{cc}1 & 2 \\ -1 & 4\end{array}\right)$.
The characteristic polynomial is

$$
f(\lambda)=\lambda^{2}-\operatorname{Tr}(A) \lambda+\operatorname{det}(A)=\lambda^{2}-5 \lambda+6=(\lambda-2)(\lambda-3)
$$

Therefore the eigenvalues are 2 and 3 . Let's compute some eigenvectors:

$$
(A-2 I) x=0 \Longleftrightarrow\left(\begin{array}{ll}
-1 & 2 \\
-1 & 2
\end{array}\right) x=0 \stackrel{\text { rref }}{m \sim}\left(\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right) x=0
$$

The parametric form is $x=2 y$, so $v_{1}=\binom{2}{1}$ is an eigenvector with eigenvalue 2 .

$$
(A-3 I) x=0 \Longleftrightarrow\left(\begin{array}{ll}
-2 & 2 \\
-1 & 1
\end{array}\right) x=0 \stackrel{\text { rref }}{m \sim}\left(\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right) x=0
$$

The parametric form is $x=y$, so $v_{2}=\binom{1}{1}$ is an eigenvector with eigenvalue 3 .
The eigenvectors v_{1}, v_{2} are linearly independent, so the Diagonalization Theorem says

$$
A=P D P^{-1} \quad \text { for } \quad P=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right) \quad D=\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right)
$$

Diagonalization

Example 2

Problem: Diagonalize $A=\left(\begin{array}{ccc}4 & -3 & 0 \\ 2 & -1 & 0 \\ 1 & -1 & 1\end{array}\right)$.
The characteristic polynomial is

$$
f(\lambda)=\operatorname{det}(A-\lambda I)=-\lambda^{3}+4 \lambda^{2}-5 \lambda+2=-(\lambda-1)^{2}(\lambda-2)
$$

Therefore the eigenvalues are 1 and 2 , with respective multiplicities 2 and 1 .
First compute the 1-eigenspace:

$$
(A-I) x=0 \Longleftrightarrow\left(\begin{array}{lll}
3 & -3 & 0 \\
2 & -2 & 0 \\
1 & -1 & 0
\end{array}\right) x=0 \underset{\sim}{\text { ref }} \rightarrow\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) x=0
$$

The parametric vector form is $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=y\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)+z\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$.
Hence a basis for the 1-eigenspace is

$$
\mathcal{B}_{1}=\left\{v_{1}, v_{2}\right\} \quad \text { where } \quad v_{1}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), \quad v_{2}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) .
$$

Diagonalization

Example 2, continued

Now let's compute the 2-eigenspace:

$$
(A-2 I) x=0 \Longleftrightarrow\left(\begin{array}{ccc}
2 & -3 & 0 \\
2 & -3 & 0 \\
1 & -1 & -1
\end{array}\right) x=0 \stackrel{\text { rref }}{m \rightarrow}\left(\begin{array}{ccc}
1 & 0 & -3 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right) x=0
$$

The parametric form is $x=3 z, y=2 z$, so an eigenvector with eigenvalue 2 is

$$
v_{3}=\left(\begin{array}{l}
3 \\
2 \\
1
\end{array}\right)
$$

Note that v_{1}, v_{2} form a basis for the 1-eigenspace, and v_{3} has a distinct eigenvalue. Thus, the eigenvectors v_{1}, v_{2}, v_{3} are linearly independent and the Diagonalization Theorem says

$$
A=P D P^{-1} \quad \text { for } \quad P=\left(\begin{array}{lll}
1 & 0 & 3 \\
1 & 0 & 2 \\
0 & 1 & 1
\end{array}\right) \quad D=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

In this case: there are 3 linearly independent eigenvectors and only 2 distinct eigenvalues.

Diagonalization

Procedure

How to diagonalize a matrix A :

1. Find the eigenvalues of A using the characteristic polynomial.
2. Compute a basis \mathcal{B}_{λ} for each λ-eigenspace of A.
3. If there are fewer than n total vectors in the union of all of the eigenspace bases \mathcal{B}_{λ}, then the matrix is not diagonalizable.
4. Otherwise, the n vectors $v_{1}, v_{2}, \ldots, v_{n}$ in your eigenspace bases are linearly independent, and $A=P D P^{-1}$ for

$$
P=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{n} \\
\mid & \mid & & \mid
\end{array}\right) \quad \text { and } \quad D=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right)
$$

where λ_{i} is the eigenvalue for v_{i}.

Diagonalization

A non-diagonalizable matrix
Problem: Show that $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ is not diagonalizable.
The characteristic polynomial is

$$
f(\lambda)=\operatorname{det}(A-\lambda I)=(\lambda-1)^{2}
$$

Let's compute the 1-eigenspace:

$$
(A-I) x=0 \Longleftrightarrow\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) x=0
$$

A basis for the 1-eigenspace is $\binom{1}{0}$; solution has only one free variable!

Conclusion:

- All eigenvectors of A are multiples of $\binom{1}{0}$.
- So A has only one linearly independent eigenvector
- If A was diagonalizable, there would be two linearly independent eigenvectors!

Poll

Poll

Which of the following matrices are diagonalizable, and why?
A. $\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$
B. $\left(\begin{array}{ll}1 & 2 \\ 0 & 2\end{array}\right)$
C. $\left(\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right)$
D. $\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$

Matrix D is already diagona!!

Matrix B is diagonalizable because it has two distinct eigenvalues.
Matrices A and C are not diagonalizable: Same argument as previous slide:
All eigenvectors are multiples of $\binom{1}{0}$.

Non-Distinct Eigenvalues

Definition

Let λ be an eigenvalue of a square matrix A. The geometric multiplicity of λ is the dimension of the λ-eigenspace.

Theorem

Let λ be an eigenvalue of a square matrix A. Then
$1 \leq($ the geometric multiplicity of $\lambda) \leq($ the algebraic multiplicity of $\lambda)$.

- Note: If λ is an eigenvalue, then the λ-eigenspace has dimension at least 1 .
- ...but it might be smaller than what the characteristic polynomial suggests. The intuition/visualisation is beyond the scope of this course.

Multiplicities all one

If there are n eigenvalues all with algebraic multiplicity 1 (so does the geometric multiplicities), then their corresponding eigenvectors are linearly independent. Therefore A is diagonalizable.

Non-Distinct Eigenvalues

(Good) examples

From previous exercises we know:
Example
The matrix $A=\left(\begin{array}{ccc}4 & -3 & 0 \\ 2 & -1 & 0 \\ 1 & -1 & 1\end{array}\right)$ has characteristic polynomial

$$
f(\lambda)=-(\lambda-1)^{2}(\lambda-2)
$$

The matrix $B=\left(\begin{array}{cc}1 & 2 \\ -1 & 4\end{array}\right)$ has characteristic polynomial

$$
f(\lambda)=(1-\lambda)(4-\lambda)+2=(\lambda-2)(\lambda-3)
$$

Matrix A	Geom. M.	Alg. M.
$\lambda=1$	2	2
$\lambda=2$	1	1

Matrix B	Geom. M.	Alg. M.
$\lambda=2$	1	1
$\lambda=3$	1	1

Thus, both matrices are diagonalizable.

Non-Distinct Eigenvalues

(Bad) example

Example

The matrix $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ has characteristic polynomial $f(\lambda)=(\lambda-1)^{2}$.
We showed before that the 1-eigenspace has dimension 1 and A was not diagonalizable. The geometric multiplicity is smaller than the algebraic.

Eigenvalue	Geometric	Algebraic
$\lambda=1$	1	2

The Diagonalization Theorem (Alternate Form)
Let A be an $n \times n$ matrix. The following are equivalent:

1. A is diagonalizable.
2. The sum of the geometric multiplicities of the eigenvalues of A equals n.
3. The sum of all algebraic multiplicities is n. And for each eigenvalue, the geometric and algebraic multiplicity are equal.

Applications to Difference Equations

Let $D=\left(\begin{array}{cc}1 & 0 \\ 0 & 1 / 2\end{array}\right)$.
Start with a vector v_{0}, and let $v_{1}=D v_{0}, v_{2}=D v_{1}, \ldots, v_{n}=D^{n} v_{0}$.

Question: What happens to the v_{i} 's for different starting vectors v_{0} ?

Answer: Note that D is diagonal, so

$$
D^{n}\binom{a}{b}=\left(\begin{array}{cc}
1^{n} & 0 \\
0 & 1 / 2^{n}
\end{array}\right)\binom{a}{b}=\binom{a}{b / 2^{n}}
$$

If we start with $v_{0}=\binom{a}{b}$, then

- the x-coordinate equals the initial coordinate,
- the y-coordinate gets halved every time.

Applications to Difference Equations

Picture

$$
D\binom{a}{b}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1 / 2
\end{array}\right)\binom{a}{b}=\binom{a}{b / 2}
$$

So all vectors get "collapsed into the x-axis", which is the 1-eigenspace.

Applications to Difference Equations

More complicated example
Let $A=\left(\begin{array}{ll}3 / 4 & 1 / 4 \\ 1 / 4 & 3 / 4\end{array}\right)$.
Start with a vector v_{0}, and let $v_{1}=A v_{0}, v_{2}=A v_{1}, \ldots, v_{n}=A^{n} v_{0}$.
Question: What happens to the v_{i} 's for different starting vectors v_{0} ?
Matrix Powers: This is a diagonalization question. Bottom line: $A=P D P^{-1}$ for

$$
P=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \quad D=\left(\begin{array}{cc}
1 & 0 \\
0 & 1 / 2
\end{array}\right)
$$

Hence $v_{n}=P D^{n} P^{-1} v_{0}$.
Details: The characteristic polynomial is

$$
f(\lambda)=\lambda^{2}-\operatorname{Tr}(A) \lambda+\operatorname{det}(A)=\lambda^{2}-\frac{3}{2} \lambda+\frac{1}{2}=(\lambda-1)\left(\lambda-\frac{1}{2}\right)
$$

We compute eigenvectors with eigenvalues 1 and $1 / 2$ to be, respectively,

$$
w_{1}=\binom{1}{1} \quad w_{2}=\binom{1}{-1} .
$$

Applications to Difference Equations

Picture of the more complicated example
$A^{n}=P D^{n} P^{-1}$ acts on the usual coordinates of v_{0} in the same way that D^{n} acts on the \mathcal{B}-coordinates, where $\mathcal{B}=\left\{w_{1}, w_{2}\right\}$.

So all vectors get "collapsed into the 1-eigenspace".

Extra: Proof Diagonalization Theorem

Why is the Diagonalization Theorem true?
A diagonalizable implies A has n linearly independent eigenvectors: Suppose $A=P D P^{-1}$, where D is diagonal with diagonal entries $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the columns of P. They are linearly independent because P is invertible. So $P e_{i}=v_{i}$, hence $P^{-1} v_{i}=e_{i}$.

$$
A v_{i}=P D P^{-1} v_{i}=P D e_{i}=P\left(\lambda_{i} e_{i}\right)=\lambda_{i} P e_{i}=\lambda_{i} v_{i} .
$$

Hence v_{i} is an eigenvector of A with eigenvalue λ_{i}. So the columns of P form n linearly independent eigenvectors of A, and the diagonal entries of D are the eigenvalues.
A has n linearly independent eigenvectors implies A is diagonalizable: Suppose A has n linearly independent eigenvectors $v_{1}, v_{2}, \ldots, v_{n}$, with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. Let P be the invertible matrix with columns $v_{1}, v_{2}, \ldots, v_{n}$. Let $D=P^{-1} A P$.

$$
D e_{i}=P^{-1} A P e_{i}=P^{-1} A v_{i}=P^{-1}\left(\lambda_{i} v_{i}\right)=\lambda_{i} P^{-1} v_{i}=\lambda_{i} e_{i} .
$$

Hence D is diagonal, with diagonal entries $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. Solving $D=P^{-1} A P$ for A gives $A=P D P^{-1}$.

