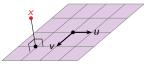
Section 6.1

Inner Product, Length, and Orthogonality

Orientation

• Almost solve the equation Ax = b

Problem: In the real world, *data is imperfect*.



But due to measurement error, the measured x is not actually in Span $\{u, v\}$. But you know, for theoretical reasons, it must lie on that plane.

What do you do?

The real value is *probably the closest point*, on the plane, to *x*.

New terms: Orthogonal projection ('closest point'), orthogonal vectors, angle.

The Dot Product

The dot product encodes the notion of *angle* between two vectors. We will use it to define *orthogonality* (i.e. when two vectors are perpendicular)

Definition

The **dot product** of two vectors x, y in \mathbf{R}^n is

$$x \cdot y = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \stackrel{\text{def}}{=} x_1 y_1 + x_2 y_2 + \dots + x_n y_n.$$

This is the same as $x^T y$.

Example

$$\begin{pmatrix} 1\\2\\3 \end{pmatrix} \cdot \begin{pmatrix} 4\\5\\6 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 4\\5\\6 \end{pmatrix} = 1 \cdot 4 + 2 \cdot 5 + 3 \cdot 6 = 32.$$

Many usual arithmetic rules hold, as long as you remember you can only dot two vectors together, and that *the result is a scalar*.

$$\triangleright x \cdot y = y \cdot x$$

$$(x+y) \cdot z = x \cdot z + y \cdot z$$

 $(cx) \cdot y = c(x \cdot y)$

Dotting a *vector with itself* is special:

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = x_1^2 + x_2^2 + \dots + x_n^2.$$

Hence:

- ► $x \cdot x \ge 0$
- $x \cdot x = 0$ if and only if x = 0.

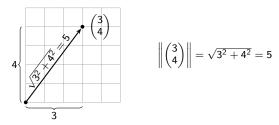
Important: $x \cdot y = 0$ does not imply x = 0 or y = 0. For example, $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 0$.

The Dot Product and Length

Definition The length or norm of a vector x in \mathbf{R}^n is

$$|x|| = \sqrt{x \cdot x} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

Why is this a good definition? The Pythagorean theorem!



Fact

If x is a vector and c is a scalar, then $||cx|| = |c| \cdot ||x||$.

$$\left\| \begin{pmatrix} 6\\8 \end{pmatrix} \right\| = \left\| 2 \begin{pmatrix} 3\\4 \end{pmatrix} \right\| = 2 \left\| \begin{pmatrix} 3\\4 \end{pmatrix} \right\| = 10$$

The Dot Product and Distance

The following is just *the length* of the vector *from x to y*.

Definition

The **distance** between two points x, y in \mathbf{R}^n is

$$\mathsf{dist}(x,y) = \|y - x\|.$$

Example

Let x = (1, 2) and y = (4, 4). Then

dist
$$(x, y) = ||y - x|| = \left\| \begin{pmatrix} 3 \\ 2 \end{pmatrix} \right\| = \sqrt{3^2 + 2^2} = \sqrt{13}$$

Unit Vectors

Definition

A unit vector is a vector v with length ||v|| = 1.

Example

The unit coordinate vectors are unit vectors:

$$\|e_1\| = \left\| \begin{pmatrix} 1\\0\\0 \end{pmatrix} \right\| = \sqrt{1^2 + 0^2 + 0^2} = 1$$

Definition

Let x be a nonzero vector in \mathbf{R}^n . The unit vector in the direction of x is the vector $\frac{x}{\|x\|}$.

Is this really a unit vector?

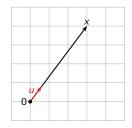
scalar
$$\|x\| = \frac{1}{\|x\|} \|x\| = 1.$$

Unit Vectors Example

Example

What is the unit vector in the direction of $x = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$?

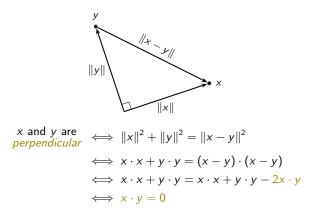
$$u = \frac{x}{\|x\|} = \frac{1}{\sqrt{3^2 + 4^2}} \begin{pmatrix} 3\\4 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 3\\4 \end{pmatrix}.$$



Orthogonality

Definition Two vectors x, y are **orthogonal** or **perpendicular** if $x \cdot y = 0$. Notation: Write it as $x \perp y$.

Why is this a good definition? The Pythagorean theorem / law of cosines!



Fact: $x \perp y \iff ||x - y||^2 = ||x||^2 + ||y||^2$ (Pythagorean Theorem)

Orthogonality Example

Problem: Find all vectors orthogonal to $v = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$.

We have to find all vectors x such that $x \cdot v = 0$. This means solving the equation

$$0 = x \cdot v = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} = x_1 + x_2 - x_3.$$

The parametric form for the solution is $x_1 = -x_2 + x_3$, so the *parametric vector form* of the general solution is

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = x_2 \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

For instance,
$$\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \perp \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \text{ because } \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} = 0.$$

Orthogonality Example

Problem: Find all vectors orthogonal to both $v = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$ and $w = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

Now we have to solve the system of two homogeneous equations

$$0 = x \cdot v = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} = x_1 + x_2 - x_3$$
$$0 = x \cdot w = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = x_1 + x_2 + x_3.$$

In matrix form:

The rows are v and w $\longrightarrow \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix} \xrightarrow{\text{rref}} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

The parametric vector form of the solution is

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = x_2 \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}.$$

Problem: Find all vectors orthogonal to v_1, v_2, \ldots, v_m in \mathbb{R}^n .

This is the same as finding all vectors x such that

$$0 = v_1^T x = v_2^T x = \cdots = v_m^T x.$$

Putting the row vectors $v_1^T, v_2^T, \dots, v_m^T$ into a matrix, this is the same as finding all x such that

$$\begin{pmatrix} -\mathbf{v}_1^T - \\ -\mathbf{v}_2^T - \\ \vdots \\ -\mathbf{v}_m^T - \end{pmatrix} \mathbf{x} = \begin{pmatrix} \mathbf{v}_1 \cdot \mathbf{x} \\ \mathbf{v}_2 \cdot \mathbf{x} \\ \vdots \\ \mathbf{v}_m \cdot \mathbf{x} \end{pmatrix} = \mathbf{0}.$$

The set of all vectors orthogonal to some vectors v_1, v_2, \ldots, v_m in \mathbf{R}^n is the *null space* of the $m \times n$ matrix:

$$\begin{pmatrix} - v_1^T - \\ - v_2^T - \\ \vdots \\ - v_m^T - \end{pmatrix}.$$

In particular, this set is a subspace!

Orthogonal Complements

Definition

Let W be a subspace of \mathbf{R}^n . Its orthogonal complement is

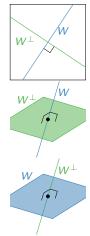
$$W_{\perp}^{\perp} = \left\{ v \text{ in } \mathbb{R}^{n} \mid v \cdot w = 0 \text{ for all } w \text{ in } W \right\} \text{ read "W perp"}$$
$$W_{\perp}^{\perp} \text{ is orthogonal complement}$$
$$A^{T} \text{ is transpose}$$

Pictures:

The orthogonal complement of a line in \mathbf{R}^2 is the perpendicular line.

The orthogonal complement of a line in \mathbf{R}^3 is the perpendicular plane.

The orthogonal complement of a plane in ${\ensuremath{\mathsf{R}}}^3$ is the perpendicular line.



Orthogonal Complements

Basic properties

Facts: Let W be a subspace of \mathbf{R}^n . 1. W^{\perp} is also a subspace of \mathbb{R}^n 2. $(W^{\perp})^{\perp} = W$ 3. dim W + dim $W^{\perp} = n$ 4. If $W = \text{Span}\{v_1, v_2, \dots, v_m\}$, then $W^{\perp}=$ all vectors orthogonal to each v_1,v_2,\ldots,v_m $= \{x \text{ in } \mathbf{R}^n \mid x \cdot v_i = 0 \text{ for all } i = 1, 2, ..., m \}$ $= \operatorname{Nul} \left(\begin{array}{c} -v_1 \\ -v_2^T \\ \vdots \\ \vdots \\ \tau \end{array} \right).$ Property 4 $\mathsf{Span}\{v_1, v_2, \dots, v_m\}^{\perp} = \mathsf{Nul}\begin{pmatrix} -v_1' \\ -v_2^T \\ \vdots \\ \vdots \\ -v_1^T \end{pmatrix}$

Row space, column space, null space

Definition

The row space of an $m \times n$ matrix A is the span of the rows of A. It is denoted Row A. Equivalently, it is the column span of A^T :

Row $A = \operatorname{Col} A^T$.

It is a subspace of \mathbf{R}^n .

We showed before that if A has rows $v_1^T, v_2^T, \ldots, v_m^T$, then

$$\operatorname{Span}\{v_1, v_2, \ldots, v_m\}^{\perp} = \operatorname{Nul} A.$$

Hence we have shown: $(\text{Row } A)^{\perp} = \text{Nul } A$.

Other Facts:

Orthogonal Complements of Most of the Subspaces We've Seen

For any vectors v_1, v_2, \ldots, v_m :

T

$$\left(\operatorname{Span}\{v_1, v_2, \dots, v_m\}\right)^{\perp} = \operatorname{Nul} \begin{pmatrix} -v_1' - \\ -v_2^T - \\ \vdots \\ -v_m^T - \end{pmatrix}$$

For any matrix A:

 $\operatorname{Row} A = \operatorname{Col} A^T$

thus

$$(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A \qquad \operatorname{Row} A = (\operatorname{Nul} A)^{\perp} (\operatorname{Col} A)^{\perp} = \operatorname{Nul} A^{T} \qquad \operatorname{Col} A = (\operatorname{Nul} A^{T})^{\perp}$$

Example

Let's check W^{\perp} is a subspace.

► Is 0 in W^{\perp} ?

Yes: $0 \cdot w = 0$ for any w in W.

• Closed under addition: Suppose x, y are in W^{\perp} . So $x \cdot w = 0$ and $y \cdot w = 0$ for all w in W.

Then $(x + y) \cdot w = x \cdot w + y \cdot w = 0 + 0 = 0$ for all w in W. So x + y is also in W^{\perp} .

• Closed under scalar product: Suppose x is in W^{\perp} . So $x \cdot w = 0$ for all w in W.

If c is a scalar, then $(cx) \cdot w = c(x \cdot 0) = c(0) = 0$ for any w in W. So cx is in W^{\perp} .