Section 6.3

Orthogonal Projections

Motivation

Example with a line: The closest point to x in L is $\operatorname{proj}_{L}(x)=\frac{x \cdot u}{u \cdot u} u$

Let $u=\binom{3}{2}$ and let $L=\operatorname{Span}\{u\}$. Let $x=\binom{-6}{4}$. In this case,

$$
x_{L}=\operatorname{proj}_{L}(x)=-\frac{10}{13}\binom{3}{2} \quad x_{L \perp}=x-\operatorname{proj}_{L}(x)=\binom{-6}{4}+\frac{10}{13}\binom{3}{2} .
$$

Orthogonal Projections

Definition

Let W be a subspace of \mathbf{R}^{n}, and let $\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ be an orthogonal basis for W. The orthogonal projection of a vector x onto W is

$$
\operatorname{proj}_{W}(x) \stackrel{\text { def }}{=} \sum_{i=1}^{m} \frac{x \cdot u_{i}}{u_{i} \cdot u_{i}} u_{i} .
$$

Note: If $L_{i}=\operatorname{Span}\left\{u_{i}\right\}$. Then $\frac{x \cdot u_{i}}{u_{i} \cdot u_{i}} u_{i}=\operatorname{proj}_{L_{i}}(x)$.
The orthogonal projection is formed by adding orthogonal projections onto perpendicular lines.

Orthogonal Projections

Properties

We can think of orthogonal projection as a transformation:

$$
\operatorname{proj}_{w}: \mathbf{R}^{n} \longrightarrow \mathbf{R}^{n} \quad x \mapsto \operatorname{proj}_{w}(x)
$$

Theorem
Let W be a subspace of \mathbf{R}^{n}.

1. proj_{W} is a linear transformation.
2. For every x in W, we have $\operatorname{proj}_{W}(x)=x$.
3. For every x in W^{\perp}, we have $\operatorname{proj}_{W}(x)=0$.
4. The range of proj_{W} is W.

The following is the property we wanted all along.

Best Approximation Theorem

Let W be a subspace of \mathbf{R}^{n}, and let x be a vector in \mathbf{R}^{n}. Then $y=\operatorname{proj}_{W}(x)$ is the closest point in W to x, in the sense that

$$
\operatorname{dist}(x, y) \leq \operatorname{dist}\left(x, y^{\prime}\right) \quad \text { for all } \quad y^{\prime} \text { in } W .
$$

Orthogonal Projections

Best approximation

Every vector x can be decompsed uniquely as $x=x_{W}+x_{W \perp}$ where

- $x_{W}=y$ is the closest vector to x in W, and
- $x_{W \perp}=x-y$ is in W^{\perp}.

Theorem

Let W be a subspace of \mathbf{R}^{n}, and let x be a vector in \mathbf{R}^{n}. Then $\operatorname{proj}_{W}(x)$ is the closest point to x in W. Therefore

$$
x_{W}=\operatorname{proj}_{W}(x) \quad x_{W} \perp=x-\operatorname{proj}_{W}(x) .
$$

Why? Let $y=\operatorname{proj}_{W}(x)$. We need to show that $x-y$ is in W^{\perp}. In other words, $u_{i} \cdot(x-y)=0$ for each i. Let's do u_{1} :
$u_{1} \cdot(x-y)=u_{1} \cdot\left(x-\sum_{i=1}^{m} \frac{x \cdot u_{i}}{u_{i} \cdot u_{i}} u_{i}\right)=u_{1} \cdot x-\frac{x \cdot u_{1}}{u_{1} \cdot u_{1}}\left(u_{1} \cdot u_{1}\right)-0-\cdots=0$.

Orthogonal Projections

Matrices

What is the matrix for $\operatorname{proj}_{W}: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$, where

$$
W=\operatorname{Span}\left\{\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right\} ?
$$

Answer: Recall how to compute the matrix for a linear transformation:

$$
A=\left(\begin{array}{ccc}
\mid & \mid & \mid \\
\operatorname{proj}_{W}\left(e_{1}\right) & \operatorname{proj}_{W}\left(e_{2}\right) & \operatorname{proj}_{W}\left(e_{3}\right)
\end{array}\right) .
$$

We compute:

$$
\begin{aligned}
& \operatorname{proj}_{W}\left(e_{1}\right)=\frac{e_{1} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\frac{e_{1} \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}=\frac{1}{2}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)+\frac{1}{3}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{c}
5 / 6 \\
1 / 3 \\
-1 / 6
\end{array}\right) \\
& \operatorname{proj}_{W}\left(e_{2}\right)=\frac{e_{2} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\frac{e_{2} \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}=0+\frac{1}{3}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
1 / 3 \\
1 / 3 \\
1 / 3
\end{array}\right) \\
& \operatorname{proj}_{W}\left(e_{3}\right)=\frac{e_{3} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\frac{e_{3} \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}=-\frac{1}{2}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)+\frac{1}{3}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{c}
-1 / 6 \\
1 / 3 \\
5 / 6
\end{array}\right)
\end{aligned}
$$

Therefore $A=\left(\begin{array}{ccc}5 / 6 & 1 / 3 & -1 / 6 \\ 1 / 3 & 1 / 3 & 1 / 3 \\ -1 / 6 & 1 / 3 & 5 / 6\end{array}\right)$.

Orthogonal Projections

Let A be the matrix for proj_{W}, where W is an m-dimensional subspace of \mathbf{R}^{n}.

Facts:

1. A is diagonalizable with eigenvalues 0 and 1 ;
2. it is similar to the diagonal matrix with m ones and $n-m$ zeros on the diagonal, and
3. $A^{2}=A$.

Example: If W is a plane in \mathbf{R}^{3}, then A is similar to projection onto the $x y$-plane:

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Why 1-2? Let $v_{1}, v_{2}, \ldots, v_{m}$ be a basis for W, and let $v_{m+1}, v_{m+2}, \ldots, v_{n}$ be a basis for W^{\perp}. These are (linearly independent) eigenvectors with eigenvalues 1 and 0 , respectively, and they form a basis for \mathbf{R}^{n} because there are n of them.
Why 3? Projecting twice is the same as projecting once:

$$
\operatorname{proj}_{W} \circ \operatorname{proj}_{W}=\operatorname{proj}_{W} \Longrightarrow A \cdot A=A .
$$

Orthogonal Projections

Minimum distance

What is the (minimum) distance from e_{1} to $W=\operatorname{Span}\left\{\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$?
Answer: From e_{1} to its closest point on W :

$$
\operatorname{dist}\left(e_{1}, \operatorname{proj}_{W}\left(e_{1}\right)\right)=\left\|\left(e_{1}\right)_{W \perp}\right\|
$$

$$
\begin{aligned}
& \operatorname{dist}\left(e_{1}, \operatorname{proj}_{w}\left(e_{1}\right)\right) \\
= & \left\|\left(\begin{array}{c}
1 \\
0 \\
0
\end{array}\right)-\left(\begin{array}{c}
5 / 6 \\
1 / 3 \\
-1 / 6
\end{array}\right)\right\| \\
= & \left\|\left(\begin{array}{c}
1 / 6 \\
-1 / 3 \\
-1 / 6
\end{array}\right)\right\| \\
= & \sqrt{(1 / 6)^{2}+(-1 / 3)^{2}+(-1 / 6)^{2}} \\
= & \frac{1}{\sqrt{6}} .
\end{aligned}
$$

