
Section 6.3

Orthogonal Projections



Motivation
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Example with a line: The closest point to x in L is projL(x) =
x·u
u·u u
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Let u =
(
3
2

)
and let L = Span{u}. Let x =

(−6
4

)
. In this case,

xL = projL(x) = −
10

13

(
3
2

)
xL⊥ = x − projL(x) =

(
−6
4

)
+

10

13

(
3
2

)
.



Orthogonal Projections

Definition
Let W be a subspace of Rn, and let {u1, u2, . . . , um} be an orthogonal basis for
W . The orthogonal projection of a vector x onto W is

projW (x)
def
=

m∑
i=1

x · ui
ui · ui

ui .

Note: If Li = Span{ui}. Then x·ui
ui ·ui

ui = projLi (x).

The orthogonal projection is formed by adding orthogonal projections onto
perpendicular lines.
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Orthogonal Projections
Properties

We can think of orthogonal projection as a transformation:

projW : Rn −→ Rn x 7→ projW (x).

Theorem
Let W be a subspace of Rn.

1. projW is a linear transformation.

2. For every x in W , we have projW (x) = x .

3. For every x in W⊥, we have projW (x) = 0.

4. The range of projW is W .

The following is the property we wanted all along.

Best Approximation Theorem

Let W be a subspace of Rn, and let x be a vector in Rn. Then y = projW (x) is
the closest point in W to x , in the sense that

dist(x , y) ≤ dist(x , y ′) for all y ′ in W .



Orthogonal Projections

Every vector x can be decompsed uniquely as x = xW + xW⊥

where
I xW= y is the closest vector to x in W , and

I xW⊥= x − y is in W⊥.

Best approximation

Theorem
Let W be a subspace of Rn, and let x be a vector in Rn. Then projW (x) is the
closest point to x in W . Therefore

xW = projW (x) xW⊥ = x − projW (x).

Why? Let y = projW (x). We need to show that x − y is in W⊥. In other
words, ui · (x − y) = 0 for each i . Let’s do u1:

u1 · (x − y) = u1 ·

(
x −

m∑
i=1

x · ui
ui · ui

ui

)
= u1 · x −

x · u1
u1 · u1

(u1 · u1)− 0− · · · = 0.



Orthogonal Projections
Matrices

What is the matrix for projW : R3 → R3, where

W = Span


 1

0
−1

 ,

1
1
1

?

Answer: Recall how to compute the matrix for a linear transformation:

A =

 | | |
projW (e1) projW (e2) projW (e3)
| | |

 .

We compute:

projW (e1) =
e1 · u1
u1 · u1

u1 +
e1 · u2
u2 · u2

u2 =
1

2

 1
0
−1

 +
1

3

1
1
1

 =

 5/6
1/3
−1/6


projW (e2) =

e2 · u1
u1 · u1

u1 +
e2 · u2
u2 · u2

u2 = 0 +
1

3

1
1
1

 =

1/3
1/3
1/3


projW (e3) =

e3 · u1
u1 · u1

u1 +
e3 · u2
u2 · u2

u2 = −
1

2

 1
0
−1

 +
1

3

1
1
1

 =

−1/61/3
5/6


Therefore A =

 5/6 1/3 −1/6
1/3 1/3 1/3
−1/6 1/3 5/6

.



Orthogonal Projections
Matrix facts

Let A be the matrix for projW , where W is an m-dimensional subspace of Rn.

1. A is diagonalizable with eigenvalues 0 and 1;

2. it is similar to the diagonal matrix with m ones and n −m
zeros on the diagonal, and

3. A2 = A.

Facts:

Example: If W is a plane in R3, then A is similar to projection onto the
xy -plane:  1 0 0

0 1 0
0 0 0

 .

Why 1-2? Let v1, v2, . . . , vm be a basis for W , and let vm+1, vm+2, . . . , vn be a
basis for W⊥. These are (linearly independent) eigenvectors with eigenvalues 1
and 0, respectively, and they form a basis for Rn because there are n of them.

Why 3? Projecting twice is the same as projecting once:

projW ◦ projW = projW =⇒ A · A = A.



Orthogonal Projections
Minimum distance

What is the (minimum) distance from e1 to W= Span


 1

0
−1

 ,

1
1
1

?

Answer: From e1 to its closest point on W :

dist(e1, projW (e1)) = ‖(e1)W⊥‖.

dist(e1, projW (e1))

=

∥∥∥∥∥
(
1
0
0

)
−

(
5/6
1/3
−1/6

)∥∥∥∥∥
=

∥∥∥∥∥
(

1/6
−1/3
−1/6

)∥∥∥∥∥
=
√

(1/6)2 + (−1/3)2 + (−1/6)2

=
1√
6
.
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