Section 6.4

The Gram—=Schmidt Process



Motivation

The procedures in §6 start with an orthogonal basis {u1, u>

» Find the B-coordinates of a vector x using dot products:

» Find the orthogonal projection of a vector x onto the span W of
uy, uz,...,Um:

m
proju (x) = > - uj
_ .
w — u; - uj
P

Problem: What if your basis isn't orthogonal?

Solution: The Gram—Schmidt process: take any basis and make it orthogonal



The Gram—Schmidt Process

Procedure

The Gram=Schmidt Process

Let {vi,v,..., Vm} be a basis for a subspace W of R". Define:
1. u=wv
2. tp = vo — proj (v2) v — 2y,
Sl =V — > =v - 1
Span{u } UL -
. V3 - U V3 - U2
3. uz = vz — proJSpan{ul,ug}(V3) = - up — ——

1
up - h uz - U2

m—1

. Vm * Uj
m. Um = Vm — prO.JSpan{ul,uz,...,um,l}(Vm) = Vm — Zl Ui - U ui
-
Then {u1, u,...,um} is an orthogonal basis for the same subspace W.
Remark
In fact, for every / between 1 and n, the set {uy, us,...,u;} is an orthogonal

basis for Span{vi, v2, ..., vj}.



The Gram—Schmidt Process

Example 1: Two vectors

Find an orthogonal basis {uy, u2} for W = Span{vi, v2}, where

1 1
vn=1[1 and w= |1
0 1
Run Gram-Schmidt:
Vo - U 1 2 1
1. m=wn 2. U2:V272 1u1: 1]l—-=111] =
uy - uy 1 2 0
Why does this work?
> First we take u; = v1. w

> Because u1 - vo # 0, we can't take up = vs.

> Fix: let Ly = Span{ui}, and let )’

uz = (V2)L1L =V - prOJLl(V2)- Vi =g
» By construction, ui - u» = 0, because
L1 1 uz.
Remember: This is an orthogonal basis for the same subspace.

Span{uy, w2} = Span{vi, v»}



The Gram—Schmidt Process

Example 2: Three vectors

Find an orthogonal basis {un, ua, us} for W = Span{vi, v2, vs} = R®, where

1 1 3
Vi = 1 Vo = 1 v = 1
0 1 1
Run Gram-Schmidt:
1. u =wv
vy 1 5 1 0
2 m=v— —— =1 -5 1] =10
ti-tn 1 0 1
V3 - V3 - U2
3. iz =v3 — 1 — uz
uy - up uz - Uz
3 1 0 1
1 0 1 0

Remember: This is an orthogonal basis for the same subspace W.



The Gram—Schmidt Process

Example 2, continued

1 1 3 G=S 1 0 1
Vi = 1 , Vo = 1 , V3 = 1 MWD ] = 1 , U = 0 , Uz = -1
0 1 1 0 1 0
Why does this work?
W>
» Once we have u; and u, orthogonal,

> let W> = Span{ui, u»}, and
us = (v3)yt = vs — projy, (u3).
» By construction, W> | us, so
U1~U3=0:LI2-U3.
Check:
u - =20

u-u3 =0

ANNN

U2~U3:0



The Gram—Schmidt Process

Example 3: Vectors in R*

Find an orthogonal basis {uy, u2, uz} for W = Span{vi, v», v}, where

1 -1 4
"= 1 vy = 4 Vs = -2
1 4 —2
1 -1 0
Run Gram-Schmidt:
1. u =wv
-1 1 —5/2
2u2:V2—V2'UIu1: 4 _9 1 — 5/2
' uL - 4 411 5/2
-1 1 —5/2
V3 - V3 - u2
3. uz = vz — u — uz
up - uz - uz
4 1 -5/2 2
-2 0|1 —-20 5/2 0
“|-2| 2a|1] 25 | 5/2 0
0 1 —5/2 -2



QR Factorization

Recall: A set of vectors {vi, o, ..., Vn} is orthonormal if they are orthogonal
unit vectors: v; - v; = 0 when i # j, and v; - v; = 1.

Orthonormal
A matrix Q has orthonormal columns if and only if QTQ=1. ]
QR Factorization Theorem
Let A be a matrix with . Then
A= QR

where Q has orthonormal columns and R is upper-triangular with positive
diagonal entries.

> The are a basis for W = Col A.
» The columns of Q are equivalent basis coming from Gram—Schmidt
(as applied to the columns of A), after normalizing to unit vectors.

» The columns of R come from the steps in Gram—Schmidt.



Procedure: QR Factorization
Through an example
1 1 0
Find the QR factorizationof A= |1 1 1
0 1 1

(The columns of A are the vectors vi, v2, v3 from example 2.)

Step 1: Run Gram—=Schmidt and solve for vi, va, v5 in terms of uy, uo, us.

1
u =v = 1 Vi = WU
0
1% u 0
2 - Uy
u=v———1u = =|0 Vo = U1+ w2
up - 1
V3 - u V3 - U2
uz3 =v3 — — Uy — uz
uy - up uz - Uz
1
= =|(-1 vz =2u; + 2 + u3



QR Factorization

Through an example, continued

Step 2: Write A = @ﬁ where (3 has orthogonal columns v, u», uz and Ris
upper-triangular (with 1s on the diagonal) as shown below.

w1 +Ous vs = +DQuz +Dus

first columnof A= | u1 w w3

second column of A =

third column of A =

=1lunn+1lwm=w

=2+ 1lup+1lus = w3

= =N O OO



QR Factorization

Through an example, continued

o 110 10 1\ /1 1 2
A=QR 11 1]={10 -1])f0 11
01 1 o1 0o/ \o 01

Step 3: To get Q and R, scale the columns of Q to get unit vectors, and
scale the rows of R by the opposite factor.
1 1/V/2 0/1  1/V2 1-V2 1.2 2.2

1 0
1 1 1|=1{1/2 0/1 -1/V2 0-1 1.1 1-1
011 0/v2 1/1 0/v/2) \0-v2 0-vV2 1-V2

It doesn’t change the product: the entries in the ith column of @ multiply by
the entries in the ith row of R.

The final QR decomposition is:

1/vV2 0 1/V2 V2 V2 2V2
A=QR Q=|1/V2 0 -1/Vv2 R=|( 0 1 1
0 1 0 0 0 V2



QR Factorization

Through a second example

1 -1 4

. L 1 4 =2
Find the QR factorization of A = 1 a4 _o
1 -1 0

(The columns are vectors from example 3.)

Step 1: Run Gram-Schmidt and solve for vi, vo, v3 in terms of uy, us, us:

1
1
u =wv = 1 Vi = up
1
—5/2
u—v—uu—vf§u— 5/2 1% —u+u
2D =W u1-u11_2 21— 5/2 = 1 2
~5/2
2
V3 - U V3 - U 4 0 4
U3:V3—¥U1—¥U2:V3+*U2: V3= ——lr+ U3
up - U - U 5 0 5
2



QR Factorization

Through a second example, continued

3 4
vi=1uw V2=§u1+1U2 V3IOU1—EUQ+1U3

Step 2: Write A = C/)\ﬁ where @ has orthogonal columns s, u>, us and Ris
upper-triangular with 1s on the diagonal.

Co 1 -5/2 2
o 1 52 0
Q= U‘l U|2 U|3 1 5/2 0
1 —5/2 -2

1 3/2 0



QR Factorization

Through a second example, continued

1 52 2 1 3/2 0
A=QR Q=|L %2 0 R=[0 1 -4/

1 52 0 o 0 X

1 —5/2 -2

Step 3: To get Q and R, normalize the columns of (3 and scale the rows of R:

Q= | w/llwmll w/llwll wus/llus
|
T flen]l 3/2 - [Junl] 0 [[un]
R = 0 1-|lw| —4/5-|w
0 0 1 ||us]|

The final QR decomposition is

1/2 —1/2  1/V2 2 3 0

A=QR Q= 1212 0 R=|0 5 -4
12 1/2 0 0 0 2v3
1/2 —1/2 —1//2



Extra: computing determinants

Consider the QR factorization of an invertible n X n matrix: A = QR.

> det(R) is easy to compute because it is upper-triangular
> det(Q) = +1 (see below)

Why:
Q is orthonormal, Q"Q = I,, so QT = Q1. Also det(Q7) = det(Q),
1 = det(l,) = det(Q" Q) = det(Q") det(Q) = det(Q)”;

so det(Q) can take only two values: +1.

A Determinant (up to sign) }

If vi,vo,..., v, are the columns of A, and w1, w2, ..., u, are the
vectors obtained by applying Gram—-Schmidt, then

det(A) = det(Q) det(R) = =£[|w[ [|wz| - - - [[un

Because the (7,i) entry of R is | ui|.

» Moreover, det(R) > 0 so det(Q) has the same sign as det(A).



Extra: computing eigenvalues
The QR algorithm

Let A be an n X n matrix with real eigenvalues. Here is the algorithm:

A= QiR1 QR factorization
Ar = Ri@: swap the Q and R

= QR find its QR factorization
Ay = RxQ,; swap the Q and R

= @3R3 find its QR factorization

et cetera

Theorem
The matrices A, converge to an upper triangular matrix whose diagonal entries
are the eigenvalues of A. Moreover, the convergence is fast!

The QR algorithm }

The algorithm above gives a computationally efficient way to
find the eigenvalues of a matrix.




