Section 7.2

Quadratic Forms

Motivation: Non-linear functions

The following functions are not linear

- $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+2 x_{2} x_{3}$
- $g\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}$
but they have 'dot-product' expressions:

$$
g(x)=x^{T} x=x^{T} I x
$$

And in general, $x^{\top} A x$

- gets you a scalar,
- is a sum that includes 'cross-product' terms $a x_{i} x_{j}$

Quadratic Forms

Definition

A quadratic form on \mathbf{R}^{n} is a function $Q: \mathbf{R}^{n} \rightarrow \mathbf{R}$ that can be expressed as $Q(x)=x^{\top} A x$ where A is an $n \times n$ symmetric matrix.

Example
If $A=\left(\begin{array}{ll}4 & 0 \\ 0 & 3\end{array}\right)$ then

$$
Q(x)=4 x_{1}^{2}+3 x_{2}^{2}
$$

Example
If $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$ then

$$
Q(x)=x_{1}^{2}+2 x_{2} x_{3}
$$

Quadratic Forms

Example

Let $Q(x)=5 x_{1}^{2}+3 x_{2}^{2}+2 x_{3}^{2}-4 x_{1} x_{2}+8 x_{2} x_{3}$
Find the matrix of the quadratic form.

A must be symmetric:

- The coefficients of x_{i}^{2} go on the diagonal of A,
- (i, j)-th and (j, i)-th entries are equal and sum up to the coefficient of $x_{i} x_{j}$.

Then

$$
A=\left(\begin{array}{ccc}
5 & -2 & 0 \\
-2 & 3 & 4 \\
0 & 4 & 2
\end{array}\right)
$$

Back to change of variables

A consequence of the spectral theorem for symmetric matrices

The principal axes theorem
Let A be $n \times n$ symmetric matrix.
Then there is an orthogonal change of variable $x=P y$ that transforms the quadratic form $x^{\top} A x$ into a quadratic form y^{\top} Dy with no cross-product terms.

If $A=P D P^{-1}$ with $P^{T}=P^{-1}$ and D diagonal, then

$$
x^{\top} A x=\underbrace{x^{\top} P}_{y^{\top} D} D \underbrace{P^{-1} x}_{y}
$$

FIGURE 1 Change of variable in $\mathbf{x}^{T} A \mathbf{x}$.

Back to change of variables

A consequence of the spectral theorem for symmetric matrices

The principal axes theorem
Let A be $n \times n$ symmetric matrix.
Then there is an orthogonal change of variable $x=P y$ that transforms the quadratic form $x^{T} A x$ into a quadratic form
y^{\top} Dy with no cross-product terms.

- Columns of P are: Principal axes
- The vector y is the coordinate vector of x relative to the basis formed by the principal axes

Change of variables

Example

Make a change of variables that transforms the quadratic form

$$
Q\left(x_{1}, x_{2}\right)=x_{1}^{2}-5 x_{2}^{2}-8 x_{1} x_{2}
$$

into a quadratic form with no cross-product terms

General Formula: there is an orthonormal matrix P such that

$$
A=P\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right) P^{T}
$$

the change of variables is given by $y=P^{\top} x=P^{-1} x$.
In this case, First $A=\left(\begin{array}{cc}1 & -4 \\ -4 & 5\end{array}\right), \lambda_{1}=3, \lambda_{2}=-7$ and $P=\frac{1}{\sqrt{5}}\left(\begin{array}{cc}2 & 1 \\ -1 & 2\end{array}\right)$
Then

$$
y^{T}\left(\begin{array}{cc}
3 & 0 \\
0 & -7
\end{array}\right) y=3 y_{1}^{2}-7 y_{2}^{2}
$$

Geometric view: Contour curves

If $Q(x)=\frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}}$ then draw all points x for which $Q(x)=1$.

(a) $5 x_{1}^{2}-4 x_{1} x_{2}+5 x_{2}^{2}=48$

To find principal axes, change variables
Standard position

Geometric view: Contour curves

If $Q(x)=\frac{x_{1}^{2}}{a^{2}}-\frac{x_{2}^{2}}{b^{2}}$ then draw all points x for which $Q(x)=1$.

hyperbola

(b) $x_{1}^{2}-8 x_{1} x_{2}-5 x_{2}^{2}=16$

To find principal axes, change variables

Standard position

Classify quadratic forms

A quadratic form is

- Indefinite: if $Q(x)$ assumes both positive and negative values
- Positive definite: if $Q(x)>0$ for all $x \neq 0$,
- Negative definite: if $Q(x)<0$ for all $x \neq 0$,
The prefix semi means e.g. $Q(x) \geq 0$ for all $x \neq 0$.

Eigenvalues

You can classify quadratic from knowing its eigenvalues (evaluate on principal axes)
e.g. Positive definite forms have all eigenvalues positive.

Positive definite

Negative definite

Indefinite

Poll

Poll

Find all indefinite quadratic forms among the display below

(a) $z=3 x_{1}^{2}+7 x_{2}^{2}$

(c) $z=3 x_{1}^{2}-7 x_{2}^{2}$

(b) $z=3 x_{1}^{2}$

(d) $z=-3 x_{1}^{2}-7 x_{2}^{2}$

Only d) is indefinite, since b) does not take negative values, it is not indefinite. The prefix semi means e.g. $Q(x) \geq 0$ for all $x \neq 0$.

Classification: do not jump to conclusions

False impression

All entries of A are positive, doesn't imply A is positive definite!

Example

Find a vector x such that colorolive $Q(x)=x^{T} A x<0$, for $A=\left(\begin{array}{lll}3 & 2 & 0 \\ 2 & 2 & 2 \\ 0 & 2 & 1\end{array}\right)$
Solution: The eigenvalues of A are $5,2,-1$. The orthonormal matrix is

$$
P=\frac{1}{3}\left(\begin{array}{ccc}
2 & -2 & 1 \\
2 & 1 & -2 \\
1 & 2 & 2
\end{array}\right)
$$

Finding eigenvector for each eigenvalue $=$ finding the principal axes of $Q(x)$.
The vector for axis with eigenvalue -1 has $Q(x)=-1$; this is

$$
v=\frac{1}{3}\left(\begin{array}{c}
1 \\
-2 \\
2
\end{array}\right)
$$

Extra: All possible contour curves

(a) $z=3 x_{1}^{2}+7 x_{2}^{2}$

(b) $z=3 x_{1}^{2}$

(c) $z=3 x_{1}^{2}-7 x_{2}^{2}$

(d) $z=-3 x_{1}^{2}-7 x_{2}^{2}$

Positive Def.
Negative Semidef.

Parallel lines
Ellipses
A point
Empty

A line
Empty

Indefinite

Hyperbolas
Two inters. lines

Hyperbolas (changed axes)

Negative Def.

