Announcements Thursday, April 19

- ▶ Please fill out the CIOS form online. *Current response:* 15%
 - If we get an 80% response rate before the final, I'll drop the two lowest quiz grades instead of one.
- **Optional Assignment:** due by email on April 20th (midnight)
- Resources
 - Office hours: posted on the website.
 - Math Lab at Clough is also a good place to visit.
 - Materials to review: https://people.math.gatech.edu/~leslava3/1718S-2802.html
 - Reading day Wednesday, April 25th:

CHEM 1315 - CHEM 2311 - CHEM 2312 (solutions) - CHEM 2313 - MATH 1553 - MATH 1554

Final Exam:

- Date: Thursday, April 26th
- Location: This lecture room, College of Comp. 017
- Time: 2:50-5:40 pm

Section 7.3

Constrained Optimization

What is important for this section:

- > A constrained optimization problem where singular values appear
- ▶ How to find decomposition of A using singular values
- Condition number (avoid error-prone matrices)

Linear Transformation: Constrained optimization

EXAMPLE 1 If $A = \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix}$, then the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps the unit sphere $\{\mathbf{x} : \|\mathbf{x}\| = 1\}$ in \mathbb{R}^3 onto an ellipse in \mathbb{R}^2 , shown in Fig. 1. Find a unit vector \mathbf{x} at which the length $\|A\mathbf{x}\|$ is maximized, and compute this maximum length.

FIGURE 1 A transformation from \mathbb{R}^3 to \mathbb{R}^2 .

Want to maximize $||Ax||^2$ subject to ||x|| = 1.

This yields a quadratic function, as in section 7.3!

Linear Transformation: Constrained optimization continued

Computing $||Ax||^2$ to obtain the quadratic function:

$$||Ax||^{2} = (Ax)^{T}(Ax) = x^{T}(A^{T}A)x$$

where $A^T A$ is symmetric!

$$A^{T}A = \begin{bmatrix} 4 & 8\\ 11 & 7\\ 14 & -2 \end{bmatrix} \begin{bmatrix} 4 & 11 & 14\\ 8 & 7 & -2 \end{bmatrix} = \begin{bmatrix} 80 & 100 & 40\\ 100 & 170 & 140\\ 40 & 140 & 200 \end{bmatrix}$$

Solution. Look at eigenvalues of $A^T A$ and find the largest one.

If A is an $m \times n$ matrix then

- $A^T A$ is symmetric
- All eigenvalues of $A^T A$ are real
- There is orthonormal basis $\{v_1, \ldots, v_n\}$ where v_i 's are eigenvectors of $A^T A$.
- All eigenvalues are non-negative

$$\begin{aligned} A\mathbf{v}_i \|^2 &= (A\mathbf{v}_i)^T A \mathbf{v}_i = \mathbf{v}_i^T A^T A \mathbf{v}_i \\ &= \mathbf{v}_i^T (\lambda_i \mathbf{v}_i) \qquad \text{Since } \mathbf{v}_i \text{ is an eigenvector of } A^T A \\ &= \lambda_i \qquad \text{Since } \mathbf{v}_i \text{ is a unit vector} \end{aligned}$$

Warning:

- Eigenvalues of $A^T A$ may be zero.
- Eigenvectors of $A^T A$ may not be eigenvectors of A.
- **but**... if $A^T A v = 0$ then A v = 0

In Fact:

• NulA has an orthogonal basis consisting of v_i 's which have $\sigma_i = 0$

Let A be an $m \times n$ matrix. Order the eigenvalues of $A^T A$: $\lambda_1 \ge \lambda_2 \ge \ldots \lambda_n \ge 0$.

▶ The singular values of *A* are square roots:

$$\sigma_1 = \sqrt{\lambda_1}, \qquad \sigma_2 = \sqrt{\lambda_2}, \qquad \dots \qquad \sigma_n = \sqrt{\lambda_n}$$

If {v₁,..., v_n} is orthonormal basis consisting of eigenvectors of A^TA, then singular values are *lengths* of vectors Av_i.

$$A\mathbf{v}_{i}\|^{2} = (A\mathbf{v}_{i})^{T}A\mathbf{v}_{i} = \mathbf{v}_{i}^{T}A^{T}A\mathbf{v}_{i}$$

= $\mathbf{v}_{i}^{T}(\lambda_{i}\mathbf{v}_{i})$ Since \mathbf{v}_{i} is an eigenvector of $A^{T}A$
= λ_{i} Since \mathbf{v}_{i} is a unit vector

• Condition number of A is σ_1/σ_n

Rule of thumb: Condition number is close to 1 then matrix *A* is less computational-error prone.

Example

Find an orthogonal basis for Col A

Old Procedure

- Select columns of A corresponding to pivot columns in row reduction.
- Apply Gram-Schmidt if necessary.

New Approach: Use $\{Av_1, \ldots, Av_r\}$, where v_i are eigenvectors of $A^T A$

(details follow)

Theorem

Suppose $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ is an orthonormal basis of \mathbb{R}^n consisting of eigenvectors of A^TA , arranged so that the corresponding eigenvalues of A^TA satisfy $\lambda_1 \ge \cdots \ge \lambda_n$, and suppose A has r nonzero singular values. Then $\{A\mathbf{v}_1, \ldots, A\mathbf{v}_r\}$ is an orthogonal basis for Col A, and rank A = r.

Why?

▶ The vectors *v*₁,..., *v*_r are orthogonal:

$$(Av_i)^{\mathsf{T}}(Av_j) = v_i^{\mathsf{T}}(A^{\mathsf{T}}A)v_j = \lambda_j(v_i^{\mathsf{T}}v_j) = 0$$

- Same argument is true for all collection v₁,..., v_n
- **but** take only vectors v_i corresponding to $\lambda_i > 0$ because otherwise:

$$|A\mathbf{v}_i||^2 = (A\mathbf{v}_i)^T A \mathbf{v}_i = \mathbf{v}_i^T A^T A \mathbf{v}_i$$

= $\mathbf{v}_i^T (\lambda_i \mathbf{v}_i)$ Since \mathbf{v}_i is an eigenvector of $A^T A$
= λ_i Since \mathbf{v}_i is a unit vector

Example

Construct an SDV decomposition for $A = \begin{pmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{pmatrix}$

- Find an orthogonal diagonalization of A^TA = PDP^T. Entries in D are in decreasing order: λ₁ = 360, λ₂ = 90, λ₃ = 0.
- 2. Let V = P

$$V = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix} = \begin{bmatrix} 1/3 & -2/3 & 2/3\\ 2/3 & -1/3 & -2/3\\ 2/3 & 2/3 & 1/3 \end{bmatrix}$$

3. Non-singular values $\sigma_1 = 6\sqrt{10}, \sigma_2 = 3\sqrt{10}$ define first columns of U

$$\begin{split} \mathbf{u}_1 &= \frac{1}{\sigma_1} A \mathbf{v}_1 = \frac{1}{6\sqrt{10}} \begin{bmatrix} 18\\ 6 \end{bmatrix} = \begin{bmatrix} 3/\sqrt{10}\\ 1/\sqrt{10} \end{bmatrix} \\ \mathbf{u}_2 &= \frac{1}{\sigma_2} A \mathbf{v}_2 = \frac{1}{3\sqrt{10}} \begin{bmatrix} -3\\ -9 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{10}\\ -3/\sqrt{10} \end{bmatrix} \end{split}$$

- If necessary, complete {u₁,..., u_m} to an orthonormal basis of R^m. (Extra columns correspond to a basis of Nul A)
- 5. Σ is has entries σ_1, σ_2 on 'diagonal'.

Example: SVD decomposition of an $m \times n$ matrix Continued

Example

Construct an SDV decomposition for $A = \begin{pmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{pmatrix}$

The non-zero singular values are σ₁ = 6√10, σ₂ = 3√10
Let V = P

$$V = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix} = \begin{bmatrix} 1/3 & -2/3 & 2/3\\ 2/3 & -1/3 & -2/3\\ 2/3 & 2/3 & 1/3 \end{bmatrix}$$

► Non-singular values $\sigma_1 = 6\sqrt{10}$, $\sigma_2 = 3\sqrt{10}$ define first columns of U $\mathbf{u}_1 = \frac{1}{\sigma_1}A\mathbf{v}_1 = \frac{1}{6\sqrt{10}}\begin{bmatrix}18\\6\end{bmatrix} = \begin{bmatrix}3/\sqrt{10}\\1/\sqrt{10}\end{bmatrix}$ $\mathbf{u}_2 = \frac{1}{\sigma_2}A\mathbf{v}_2 = \frac{1}{3\sqrt{10}}\begin{bmatrix}-9\\-3\end{bmatrix} = \begin{bmatrix}1/\sqrt{10}\\-3/\sqrt{10}\end{bmatrix}$

Decomposition:

$$A = \begin{bmatrix} 3/\sqrt{10} & 1/\sqrt{10} \\ 1/\sqrt{10} & -3/\sqrt{10} \end{bmatrix} \begin{bmatrix} 6\sqrt{10} & 0 & 0 \\ 0 & 3\sqrt{10} & 0 \end{bmatrix} \begin{bmatrix} 1/3 & 2/3 & 2/3 \\ -2/3 & -1/3 & 2/3 \\ 2/3 & -2/3 & 1/3 \end{bmatrix}$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow V^T \qquad \blacksquare$$