Review for Chapter 1

Selected Topics

Linear Equations

We have four equivalent ways of writing linear systems:

1. As a system of equations:

$$
\begin{array}{r}
2 x_{1}+3 x_{2}=7 \\
x_{1}-x_{2}=5
\end{array}
$$

2. As an augmented matrix:

$$
\left(\begin{array}{rr|r}
2 & 3 & 7 \\
1 & -1 & 5
\end{array}\right)
$$

3. As a vector equation $\left(x_{1} v_{1}+\cdots+x_{n} v_{n}=b\right)$:

$$
x_{1}\binom{2}{1}+x_{2}\binom{3}{-1}=\binom{7}{5}
$$

4. As a matrix equation $(A x=b)$:

$$
\left(\begin{array}{cc}
2 & 3 \\
1 & -1
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{7}{5}
$$

In particular, all four have the same solution set.

Number of Solutions

There are three possibilities for the reduced row echelon form of the augmented matrix of a linear system.

1. The last column is a pivot column.

There are zero solutions, i.e. the solution set is empty. In this case, the system is called inconsistent. Picture:

$$
\left(\begin{array}{ll|l}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

2. Every column except the last column is a pivot column. In this case, the system has a unique solution. Picture:

$$
\left(\begin{array}{lll|l}
1 & 0 & 0 & \star \\
0 & 1 & 0 & \star \\
0 & 0 & 1 & \star
\end{array}\right)
$$

3. The last column is not a pivot column, and some other column isn't either. In this case, the system has infinitely many solutions, corresponding to the infinitely many possible values of the free variable(s). Picture:

$$
\left(\begin{array}{llll|l}
1 & \star & 0 & \star & \star \\
0 & 0 & 1 & \star & \star
\end{array}\right)
$$

Parametric Form of Solution Sets

To find the solution set to $A x=b$, first form the augmented matrix $(A \mid b)$, then row reduce.

$$
\left(\begin{array}{rrrrr|r}
1 & 3 & 0 & 4 & 0 & 2 \\
0 & 0 & 1 & -1 & 0 & 3 \\
0 & 0 & 0 & 0 & 1 & -7
\end{array}\right)
$$

This translates into

$$
\begin{aligned}
x_{1}+3 x_{2} & x_{4} \\
& =2 \\
x_{3}-x_{4} & =3 \\
& \\
x_{5} & =-7
\end{aligned}
$$

The variables correspond to the non-augmented columns of the matrix. The free variables correspond to the non-augmented columns without pivots.

Move the free variables to the other side, get the parametric form:

$$
\begin{array}{ll}
x_{1}=2-3 x_{2}-x_{4} \\
x_{3}=3 & +x_{4} \\
x_{5}=-7 &
\end{array}
$$

This is a solution for every value of x_{3} and x_{4}.

Span

The span of vectors $v_{1}, v_{2}, \ldots, v_{n}$ is the set of all linear combinations of these vectors:

$$
\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}=\left\{a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n} \mid a_{1}, a_{2}, \ldots, a_{n} \text { in } \mathbf{R}\right\}
$$

Theorem

Let $v_{1}, v_{2}, \ldots, v_{n}$, and b be vectors in \mathbf{R}^{m}, and let A be the $m \times n$ matrix with columns $v_{1}, v_{2}, \ldots, v_{n}$. The following are equivalent: $_$either they're all true,

1. $A x=b$ is consistent.
2. $(A \mid b)$ does not have a pivot in the last column.
3. b is in $\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ (the span of the columns of A).

In this case, a solution to the matrix equation

$$
A\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=b \quad \begin{gathered}
\text { gives the linear } \\
\text { combination }
\end{gathered} x_{1} v_{1}+x_{2} v_{2}+\cdots+x_{n} v_{n}=b
$$

Parametric Vector Form of Solution Sets

Parametric form:

Now collect all of the equations into a vector equation:

$$
x=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=\left(\begin{array}{c}
2 \\
0 \\
3 \\
0 \\
-7
\end{array}\right)+x_{2}\left(\begin{array}{c}
-3 \\
1 \\
0 \\
0 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{c}
-1 \\
0 \\
1 \\
1 \\
0
\end{array}\right)
$$

This is the parametric vector form of the solution set. This means that the

$$
\text { (solution set) }=\left(\begin{array}{c}
2 \\
0 \\
3 \\
0 \\
-7
\end{array}\right)+\operatorname{Span}\left\{\left(\begin{array}{c}
-3 \\
1 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
-1 \\
0 \\
1 \\
1 \\
0
\end{array}\right)\right\}
$$

Homogeneous and Non-Homogeneous Equations

The equation $A x=b$ is called homogeneous if $b=0$, and non-homogeneous otherwise. A homogeneous equation always has the trivial solution $x=0$:

$$
A 0=0
$$

The solution set to a homogeneous equation is always a span:

$$
\text { (solutions to } A x=0)=\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}
$$

where r is the number of free variables. The solution set to a consistent non-homogeneous equation is

$$
\text { (solutions to } A x=b)=p+\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}
$$

where p is a specific solution (i.e. some vector such that $A p=b$), and Span $\left\{v_{1}, \ldots, v_{r}\right\}$ is the solution set to the homogeneous equation $A x=0$. This is a translate of a span.

Both expressions can be read off from the parametric vector form.

Transformations

Definition

A transformation (or function or map) from \mathbf{R}^{n} to \mathbf{R}^{m} is a rule T that assigns to each vector x in \mathbf{R}^{n} a vector $T(x)$ in \mathbf{R}^{m}.
Picture and vocabulary words:

It is one-to-one if different vectors in the domain go to different vectors in the codomain: $x \neq y \Longrightarrow T(x) \neq T(y)$.
It is onto if every vector in the codomain is $T(x)$ for some x. In other words, the range equals the codomain.

Linear Transformations

A transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is linear if it satisfies:

$$
T(u+v)=T(u)+T(v) \quad \text { and } \quad T(c u)=c T(u)
$$

for every u, v in \mathbf{R}^{n} and every c in \mathbf{R}.

Linear transformations are the same as matrix transformations.

Dictionary

Linear transformation

$$
T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}
$$

$$
\text { nu } \rightarrow m \times n \text { matrix } A=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
T\left(e_{1}\right) & T\left(e_{2}\right) & \cdots & T\left(e_{n}\right) \\
\mid & \mid & & \mid
\end{array}\right)
$$

$$
T(x)=A x
$$

As always, $e_{1}, e_{2}, \ldots, e_{n}$ are the unit coordinate vectors

$$
e_{1}=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right), \quad e_{2}=\left(\begin{array}{c}
0 \\
1 \\
\vdots \\
0 \\
0
\end{array}\right), \quad \ldots, \quad e_{n-1}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
1 \\
0
\end{array}\right), \quad e_{n}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right) .
$$

Linear Transformations and Matrices

Let A be an $m \times n$ matrix and T be the linear transformation $T(x)=A x$.

- The domain of T is \mathbb{R}^{n} : Input vector has n entries.
- The codomain of T is R^{m} : Output vector has m entries.
- The range of T is span of the columns of A :

This is the set of all b in \mathbf{R}^{m} such that $A x=b$ has a solution.

Example

$$
A=\left(\begin{array}{rr}
2 & 1 \\
-1 & 0 \\
1 & -1
\end{array}\right) \quad T(x)=A x
$$

- The domain of T is \mathbf{R}^{2}.
- The codomain of T is \mathbf{R}^{3}.
- The range of T is

$$
\operatorname{Span}\left\{\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right),\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)\right\}
$$

Linear Independence

A set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is linearly independent if

$$
a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n}=0 \quad \text { only when } \quad a_{1}=a_{2}=\cdots=a_{n}=0 .
$$

Otherwise they are linearly dependent, and an equation $a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n}=0$ with some $a_{i} \neq 0$ is a linear dependence relation.

Theorem

Let $v_{1}, v_{2}, \ldots, v_{n}$ be vectors in \mathbf{R}^{m}, and let A be the $m \times n$ matrix with columns $v_{1}, v_{2}, \ldots, v_{n}$. The following are equivalent:

1. The set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is linearly independent.
2. For every i between 1 and n, v_{i} is not in $\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{i-1}\right\}$.
3. $A x=0$ only has the trivial solution.
4. A has a pivot in every column.

If the vectors are linearly dependent, a nontrivial solution to the matrix equation

$$
A\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=0 \quad \text { gives the linear } \quad x_{1} v_{1}+x_{2} v_{2}+\cdots+x_{n} v_{n}=0 .
$$

Criteria on Linear Transformation: One-to-One

Theorem

Let A be an $m \times n$ matrix, and let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be the linear transformation $T(x)=A x$. The following are equivalent:

1. T is one-to-one.
2. $T(x)=b$ has one or zero solutions for every b in \mathbf{R}^{m}.
3. $A x=b$ has a unique solution or is inconsistent for every b in \mathbf{R}^{m}.
4. $A x=0$ has a unique solution.
5. The columns of A are linearly independent.
6. A has a pivot in each column.

Moral: If A has a pivot in each column then its reduced row echelon form looks like this:

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \quad \text { and }(A \mid b) \quad \text { reduces to this: } \quad\left(\begin{array}{ccc|c}
1 & 0 & 0 & \star \\
0 & 1 & 0 & \star \\
0 & 0 & 1 & \star \\
0 & 0 & 0 & \star
\end{array}\right)
$$

This can be inconsistent, but if it is consistent, it has a unique solution.
Refer: slides for $\S 1.4, \S 1.8, \S 1.9$.

Criteria on Linear Transformation: Onto

Theorem

Let A be an $m \times n$ matrix, and let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be the linear transformation $T(x)=A x$. The following are equivalent:

1. T is onto.
2. $T(x)=b$ has a solution for every b in \mathbf{R}^{m}.
3. $A x=b$ is consistent for every b in \mathbf{R}^{m}.
4. The columns of $A \operatorname{span} \mathbf{R}^{m}$.
5. A has a pivot in each row.

Moral: If A has a pivot in each row then its reduced row echelon form looks like this:

$$
\left(\begin{array}{ccccc}
1 & 0 & \star & 0 & \star \\
0 & 1 & \star & 0 & \star \\
0 & 0 & 0 & 1 & \star
\end{array}\right) \quad \text { and }(A \mid b) \quad \text { reduces to this: } \quad\left(\begin{array}{lllll|l}
1 & 0 & \star & 0 & \star & \star \\
0 & 1 & \star & 0 & \star & \star \\
0 & 0 & 0 & 1 & \star & \star
\end{array}\right) .
$$

There's no b that makes it inconsistent, so there's always a solution.
Refer: slides for $\S 1.4$ and $\S 1.9$.

Zero-sum systems: Traffic flows

- Zero-sum property of flows in/out around every node.

- Constraints: If the flow directions are mandatory (as traffic lanes) then their values must remain non-negative.

Linear combinations: Constructing a W/\&igh ht $-14 / \phi \phi \xi$ Nutritious Diet

Or for any system of balanced/reliable supplies from different distributors.

Amounts (g) Supplied per 100 \mathbf{g} of Ingredient					Amounts (g) Supplied by Cambridge Diet in One Day
Nutrient	Nonfat milk	Soy flour	Whey		33
Crotein	36	51	13	45	
Carbohydrate	52	34	74	3	
Fat	0	7	1.1		

$$
A=\left(\begin{array}{ccc}
36 & 51 & 13 \\
52 & 34 & 74 \\
0 & 7 & 1.1
\end{array}\right) \quad x=\left(\begin{array}{c}
m l \\
m l . \text { Nonfatmilk } \\
\mathrm{ml} \text {. Soy Whey }
\end{array}\right)
$$

Ax is the linear combination that represents the total amount of nutrients contained in the diet of x

- Constraints: The vector of weights for each product/distributor has to be non-negative to make sense in its context.

Linear combinations: Economy equilibrium prices

- Equilibrium prices can be assigned to the total outputs of the various sectors in such a way that the income of each sector balances its expenses
- Constraints: The prices have to be positive to make sense in this context.

Distribution of Output from:			
Coal	Electric	Steel	Purchased by:
.0	.4	.6	Coal
.6	.1	.2	Electric
.4	.5	.2	Steel

Equilibrium prices satisfy:

$$
\begin{aligned}
& P_{C}=0 P_{C}+.4 P_{E}+.6 P_{S} \\
& P_{E}=.6 P_{C}+.1 P_{E}+.2 P_{S} \\
& P_{S}=.4 P_{C}+.5 P_{E}+.2 P_{S}
\end{aligned}
$$

Difference equations: Population migration

This is a difference equation: $A x_{n}=x_{n+1}$

Annual percentage migration between city and suburbs.
From:

$$
\left[\begin{array}{ll}
.95 & .03 \\
.05 & .97
\end{array}\right] \quad \begin{aligned}
& \text { City } \\
& \text { Suburbs }
\end{aligned}
$$

$$
\begin{aligned}
\text { Pop in } 2017 & \text { city: } x_{1}=100 \\
& \text { suburbs: } x_{2}=80
\end{aligned}
$$

$$
\text { Pop in } 2018 \text { : } \quad A\binom{x_{1}}{x_{2}}
$$

If you know initial population x_{0}, what happens in 10 years x_{10} ?

Difference equations: Population growth

How to predict a population of rabbits with given dynamics:

1. half of the newborn rabbits survive their first year;
2. of those, half survive their second year;
3. their maximum life span is three years;
4. Each rabbit gets $0,6,8$ baby rabbits in their three years, respectively.

Approach: Each year, count the population by age:

$$
v_{n}=\left(\begin{array}{c}
f_{n} \\
s_{n} \\
t_{n}
\end{array}\right) \text { where } \begin{cases}f_{n} & =\text { first-year rabbits in year } n \\
s_{n} & =\text { second-year rabbits in year } n \\
t_{n} & =\text { third-year rabbits in year } n\end{cases}
$$

The dynamics say:

$$
\overbrace{\left(\begin{array}{c}
f_{n+1} \\
s_{n+1} \\
t_{n+1}
\end{array}\right)}^{v_{n+1}}=\left(\begin{array}{c}
6 s_{n}+8 t_{n} \\
f_{n} / 2 \\
s_{n} / 2
\end{array}\right)=\overbrace{\left(\begin{array}{ccc}
0 & 6 & 8 \\
\frac{1}{2} & 0 & 0 \\
0 & \frac{1}{2} & 0
\end{array}\right)\left(\begin{array}{c}
f_{n} \\
s_{n} \\
t_{n}
\end{array}\right)}^{A v_{n}}
$$

