Review for Chapter 2

Selected Topics

Matrix Multiplication/Inversion and Linear Transformations

Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ and $U: \mathbf{R}^{p} \rightarrow \mathbf{R}^{n}$ be linear transformations with matrices A and B. The composition is the linear transformation

$$
T \circ U: \mathbf{R}^{p} \rightarrow \mathbf{R}^{m} \quad \text { defined by } \quad T \circ U(x)=T(U(x))
$$

Fact: The matrix for $T \circ U$ is $A B$.
Now let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be an invertible linear transformation. This means there is a linear transformation $T^{-1}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ such that $T \circ T^{-1}(x)=x$ for all x in \mathbf{R}^{n}. Equivalently, it means T is one-to-one and onto.
Fact: If A is the matrix for T, then A^{-1} is the matrix for T^{-1}.

Matrix Multiplication/Inversion and Linear Transformations

Example

Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ scale the x-axis by 2 , and let $U: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be counterclockwise rotation by 90°.

Their matrices are:

$$
A=\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right) \quad B=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

The composition $T \circ U$ is: first rotate counterclockwise by 90°, then scale the x-axis by 2 . The matrix for $T \circ U$ is

$$
A B=\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & -2 \\
1 & 0
\end{array}\right)
$$

The inverse of U rotates clockwise by 90°. The matrix for U^{-1} is

$$
B^{-1}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Matrix Inverses

The inverse of an $n \times n$ matrix A is a matrix A^{-1} such that $A A^{-1}=I_{n}$ (equivalently, $A^{-1} A=I_{n}$).
2×2 case:

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad \Longrightarrow \quad A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

$n \times n$ case: Row reduce the augmented matrix $\left(A \mid I_{n}\right)$. If you get ($I_{n} \mid B$), then $B=A^{-1}$. Otherwise, A is not invertible.

Solving linear systems by "dividing by A ": If A is invertible, then

$$
A x=b \Longleftrightarrow x=A^{-1} b
$$

Important

If A is invertible, then $A x=b$ has exactly one solution for any b, namely, $x=A^{-1} b$.

Solving Linear Systems by Inverting Matrices

Example

Important

If A is invertible, then $A x=b$ has exactly one solution for any b, namely, $x=A^{-1} b$.

Example
Solve $\left(\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right) x=\binom{b_{1}}{b_{2}}$.
Answer:

$$
x=\left(\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right)^{-1}\binom{b_{1}}{b_{2}}=\frac{1}{2 \cdot 3-1 \cdot 1}\left(\begin{array}{cc}
3 & -1 \\
-1 & 2
\end{array}\right)\binom{b_{1}}{b_{2}}=\frac{1}{5}\binom{3 b_{1}-b_{2}}{-b_{1}+2 b_{2}}
$$

Elementary Matrices

Definition

An elementary matrix is a square matrix E which differs from I_{n} by one row operation.
There are three kinds:

$$
\begin{array}{ccc}
\begin{array}{c}
\text { scaling } \\
\left(R_{2}=2 R_{2}\right)
\end{array} & \begin{array}{c}
\text { row replacement } \\
\left(R_{2}=R_{2}+2 R_{1}\right)
\end{array} & \left(R_{1} \stackrel{\text { swap }}{\longleftrightarrow} R_{2}\right) \\
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right) & \left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) & \left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{array}
$$

Fact: if E is the elementary matrix for a row operation, then $E A$ differs from A by the same row operation.

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 3 & 4
\end{array}\right) \quad \leadsto \sim B=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 3 & 4
\end{array}\right)
$$

You get B by subtracting $2 \times$ the first row of A from the second row.

$$
B=E A \quad \text { where } \quad E=\left(\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right) \quad\binom{\text { subtract } 2 \times \text { the first row }}{\text { of } I_{2} \text { from the second row }}
$$

The Inverse of an Elementary Matrix

Fact: the inverse of an elementary matrix E is the elementary matrix obtained by doing the opposite row operation to I_{n}.

$$
\begin{gathered}
R_{2}=R_{2} \times 2 \\
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)^{-1}=\begin{array}{cc}
R_{2} \div 2 \\
R_{2}=R_{2}+2 R_{1} \\
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{array} \begin{array}{c}
R_{2}=R_{2}-2 R_{1} \\
\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)^{-1}= \\
R_{1} \longleftrightarrow R_{2} \\
\left(\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{array} \\
\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)^{-1}=\begin{array}{l}
R_{1} \longleftrightarrow R_{2}
\end{array} \\
\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

If A is invertible, then there are a sequence of row operations taking A to I_{n} :

$$
E_{r} E_{r-1} \cdots E_{2} E_{1} A=I_{n}
$$

Taking inverses (note the order!):

$$
A=E_{1}^{-1} E_{2}^{-1} \cdots E_{r}^{-1} I_{n}=E_{1}^{-1} E_{2}^{-1} \cdots E_{r}^{-1}
$$

The Invertible Matrix Theorem

For reference

The Invertible Matrix Theorem

Let A be a square $n \times n$ matrix, and let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be the linear transformation $T(x)=A x$. The following statements are equivalent.

1. A is invertible.
2. T is invertible.
3. A is row equivalent to I_{n}.
4. A has n pivots.
5. $A x=0$ has only the trivial solution.
6. The columns of A are linearly independent.
7. T is one-to-one.
8. $A x=b$ is consistent for all b in \mathbf{R}^{n}.
9. The columns of A span \mathbf{R}^{n}.
10. T is onto.
11. A has a left inverse (there exists B such that $B A=I_{n}$).
12. A has a right inverse (there exists B such that $A B=I_{n}$).
13. A^{T} is invertible.
14. The columns of A form a basis for \mathbf{R}^{n}.
15. $\operatorname{Col} A=\mathbf{R}^{n}$.
16. $\operatorname{dim} \operatorname{Col} A=n$.
17. $\operatorname{rank} A=n$.
18. $\operatorname{Nul} A=\{0\}$.
19. $\operatorname{dim} \operatorname{Nul} A=0$.

Learn it!

$L U$ factorization

A guru provides, for (suitable) $m \times n$ matrix A, matrices L and U such that

- L is lower triangular $m \times m$ matrix (with ones on the diagonal)
- U is an $m \times n$ row echelon form (not necessary reduced)
- $A=L U$
E.g.
$A=\left(\begin{array}{ccccc}2 & 4 & -1 & 5 & -1 \\ -4 & -5 & 3 & -8 & 1 \\ 2 & -5 & -4 & 1 & 8 \\ -6 & 0 & 7 & -3 & 1\end{array}\right)=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 1 & -3 & 1 & 0 \\ -3 & 4 & 2 & 1\end{array}\right)\left(\begin{array}{ccccc}2 & 4 & -1 & 5 & -2 \\ 0 & 3 & 1 & 2 & -3 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 5\end{array}\right)$

If $A=L U$ and want to solve $A x=b$

1. Solve $L y=b$,
2. Solve $U x=y$,
3. Now, x is a solution to $A x=b$.

Construction of $L U$ factorizations

Our assumption: Row reduction of A requires no row sawps

1. Row reduce the matrix A, but do not normalize pivots to being one's; e.g.
2. Separate the row reduction according to 'clearing' pivot columns
3. From row reduction, gather 'vectors' below pivots and normalize. These form the 'vectors' in L.
4. If there are more columns in L than pivots, then leave rest of entries blank.
1.-2.

$$
\left.\begin{array}{rlrl}
A & =\left[\begin{array}{rrrrr}
2 & 4 & -1 & 5 & -2 \\
-4 & -5 & 3 & -8 & 1 \\
2 & -5 & -4 & 1 & 8 \\
-6 & 0 & 7 & -3 & 1
\end{array}\right] \sim\left[\begin{array}{rrrrr}
2 & 4 & -1 & 5 & -2 \\
0 & 3 & 1 & 2 & -3 \\
0 & -9 & -3 & -4 & 10 \\
0 & 12 & 4 & 12 & -5
\end{array}\right]=A_{1} & 3 . \\
\sim A_{2}=\left[\begin{array}{rrrrr}
2 & 4 & -1 & 5 & -2 \\
0 & 3 & 1 & 2 & -3 \\
0 & 0 & 0 & 2 & 1 \\
0 & 0 & 0 & 4 & 7
\end{array}\right] \sim\left[\begin{array}{rrrrr}
2 & 4 & -1 & 5 & -2 \\
0 & 3 & 1 & 2 & -3 \\
0 & 0 & 0 & 2 & 1 \\
0 & 0 & 0 & 0 & 5
\end{array}\right]=U & \left.\begin{array}{r}
2 \\
-4 \\
2 \\
-6
\end{array}\right]\left[\begin{array}{r}
3 \\
-9 \\
12
\end{array}\right]\left[\begin{array}{l}
2 \\
4
\end{array}\right][5] \\
\div 2 & \div 3 & \div 2 \div 5 \\
\downarrow & \downarrow & \downarrow & \downarrow
\end{array}\right]\left[\begin{array}{rrrr}
1 & \\
-2 & 1 & \\
1 & -3 & 1 \\
-3 & 4 & 2 & 1
\end{array}\right] .
$$

A second example

Find the $L U$ factorization of A :

$$
\begin{aligned}
& A=\left[\begin{array}{rrrr}
2 & -4 & -2 & 3 \\
6 & -9 & -5 & 8 \\
2 & -7 & -3 & 9 \\
4 & -2 & -2 & -1 \\
-6 & 3 & 3 & 4
\end{array}\right] \sim\left[\begin{array}{rrrr}
2 & -4 & -2 & 3 \\
0 & 3 & 1 & -1 \\
0 & -3 & -1 & 6 \\
0 & 6 & 2 & -7 \\
0 & -9 & -3 & 13
\end{array}\right] \\
& \sim\left[\begin{array}{rrrr}
2 & -4 & -2 & 3 \\
0 & 3 & 1 & -1 \\
0 & 0 & 0 & 5 \\
0 & 0 & 0 & -5 \\
0 & 0 & 0 & 10
\end{array}\right] \sim\left[\begin{array}{rrrr}
2 & -4 & -2 & 3 \\
0 & 3 & 1 & -1 \\
0 & 0 & 0 & 5 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]=U \\
& \xrightarrow[\div 2]{\left[\begin{array}{r}
2 \\
6 \\
2 \\
4 \\
-6
\end{array}\right]} \underset{\div 3}{\left[\begin{array}{r}
3 \\
-3 \\
6 \\
-9
\end{array}\right]} \underset{\div 5}{\left[\begin{array}{r}
5 \\
-5 \\
10
\end{array}\right]} \\
& {\left[\begin{array}{rrrr}
1 & & & \\
3 & 1 & & \\
1 & -1 & 1 & \cdots \\
2 & 2 & -1 & \\
-3 & -3 & 2 &
\end{array}\right],} \\
& L=\left[\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
3 & 1 & 0 & 0 & 0 \\
1 & -1 & 1 & 0 & 0 \\
2 & 2 & -1 & 1 & 0 \\
-3 & -3 & 2 & 0 & 1
\end{array}\right]
\end{aligned}
$$

