
Review for Midterm 2

Selected Topics



Subspaces

Definition
A subspace of Rn is a subset V of Rn satisfying:

1. The zero vector is in V . “not empty”

2. If u and v are in V , then u + v is also in V . “closed under addition”

3. If u is in V and c is in R, then cu is in V . “closed under × scalars”

Examples:

I Any Span{v1, v2, . . . , vm}.
I The column space of a matrix: ColA = Span{columns of A}.
I The null space of a matrix: NulA =

{
x | Ax = 0

}
.

I Rn and {0}

If V can be written in any of the above ways, then it is automatically a
subspace: you’re done!



Subspaces
Example

Example

Is V =


x
y
z

 in R3
∣∣ x + y = 0

 a subspace?

1. Since 0 + 0 = 0, the zero vector is in V .

2. Let

x
y
z

 and

x ′

y ′

z ′

 be arbitrary vectors in V .

I This means x + y = 0 and x ′ + y ′ = 0.

I We have to check if

x
y
z

+

x ′

y ′

z ′

 =

x + x ′

y + y ′

z + z ′

 is in V .

I This means (x + x ′) + (y + y ′) = 0.

Indeed:

(x + x ′) + (y + y ′) = (x + y) + (x ′ + y ′) = 0 + 0 = 0,

so condition (2) holds.



Subspaces
Example, continued

Example

Is V =


x
y
z

 in R3
∣∣ x + y = 0

 a subspace?

3. Let

x
y
z

 be in V and let c be a scalar.

I This means x + y = 0.

I We have to check if c

x
y
z

 =

cx
cy
cz

 is in V .

I This means cx + cy = 0.

Indeed:
cx + cy = c(x + y) = c · 0 = 0.

So condition (3) holds.

Since conditions (1), (2), and (3) hold, V is a subspace.



Basis of a Subspace

Definition
Let V be a subspace of Rn. A basis of V is a set of vectors {v1, v2, . . . , vm} in
Rn such that:

1. V = Span{v1, v2, . . . , vm}, and

2. {v1, v2, . . . , vm} is linearly independent.

The number of vectors in a basis is the dimension of V , and is written dimV .

To check that B is a basis for V , you have to check two things:

1. B spans V .

2. B is linearly independent.

This is what it means to justify the statement “B is a basis for V .”

Basis Theorem
Let V be a subspace of dimension m. Then:

I Any m linearly independent vectors in V form a basis for V .

I Any m vectors that span V form a basis for V .

So if you already know the dimension of V , you only have to check one.



Basis of a Subspace
Example

Verify that


 1
−1
0

 ,

0
0
1

 is a basis for V =


x
y
z

 in R3
∣∣ x + y = 0

.

0. In V : both are in V because 1 + (−1) = 0 and 0 + 0 = 0.

1. Span: If

x
y
z

 is in V , then y = −x , so we can write it as

x
y
z

 =

 x
−x
z

 = x

 1
−1
0

+ z

0
0
1

 .

2. Linearly independent:

x

 1
−1
0

+ y

0
0
1

 = 0 =⇒

 x
−x
y

 =

0
0
0

 =⇒ x = y = 0.

Knew a priori that dimV = 2: then only have to check 0, then 1 or 2.



Bases of ColA and NulA

A =

 1 2 0 −1
−2 −3 4 5

2 4 0 −2

 rref

 1 0 −8 −7
0 1 4 3
0 0 0 0


pivot columns in rrefpivot columns = basis

So a basis for ColA is


 1
−2

2

 ,

 2
−3

4

. A vector in ColA :

 1
−2

2

.

Parametric vector form for solutions to Ax = 0:

x = x3


8
−4
1
0

+ x4


7
−3
0
1


basis of
NulA




8
−4
1
0

 ,


7
−3
0
1




A vector in NulA: any solution to Ax = 0, e.g., x =


8
−4
1
0

.



Rank Theorem

Rank Theorem
If A is an m × n matrix, then

rankA + dim NulA = n = the number of columns of A.

1 2 0 −1
−2 −3 4 5

2 4 0 −2

  1 0 −8 −7
0 1 4 3
0 0 0 0

 rref
A =

basis of ColAbasis of ColA free variables

In this case, rankA = 2 and dim NulA = 2, and 2 + 2 = 4, which is the number
of columns of A.



Determinants
Ways to compute them

1. Special formulas for 2× 2 and 3× 3 matrices.

2. For [upper or lower] triangular matrices:

detA = (product of diagonal entries).

3. Cofactor expansion along any row or column:

detA =
n∑

j=1

aijCij for any fixed i

detA =
n∑

i=1

aijCij for any fixed j

Start here for matrices with a row or column with lots of zeros.

4. By row reduction without scaling:

det(A) = (−1)#swaps(product of diagonal entries in REF
)

This is fastest for big and complicated matrices.

5. Cofactor expansion and any other of the above. (The cofactor formula is
recursive.)



Determinants
Defining properties

Definition
The determinant is a function

det : {square matrices} −→ R

with the following defining properties:

1. det(In) = 1

2. If we do a row replacement on a matrix (add a multiple of one row to
another), the determinant does not change.

3. If we swap two rows of a matrix, the determinant scales by −1.

4. If we scale a row of a matrix by k, the determinant scales by k.

When computing a determinant via row reduction, try to only use row
replacement and row swaps. Then you never have to worry about scaling by
the inverse.



Determinants
Magical properties

1. There is one and only one function det : {square matrices} → R satisfying
the defining properties (1)–(4).

2. A is invertible if and only if det(A) 6= 0.

3. If we row reduce A without row scaling, then

det(A) = (−1)#swaps(product of diagonal entries in REF
)
.

4. The determinant can be computed using any of the 2n cofactor
expansions.

5. det(AB) = det(A) det(B) and det(A−1) = det(A)−1.

6. det(A) = det(AT ).

7. | det(A)| is the volume of the parallelepiped defined by the columns of A.

8. If A is an n × n matrix with transformation T (x) = Ax , and S is a subset
of Rn, then the volume of T (S) is | det(A)| times the volume of S . (Even
for curvy shapes S .)

9. The determinant is multi-linear.



Determinants and Linear Transformations

Why is Property 8 true? For instance, if S is the unit cube, then T (S) is the
parallelepiped defined by the columns of A, since the columns of A are
T (e1),T (e2), . . . ,T (en). In this case, Property 8 is the same as Property 7.

e1

e2 S

vol(S) = 1

A =

(
1 1
−1 1

)
det(A) = 2

T

T (e1)

T (e2)

T (S)

vol(T (S)) = 2

For curvy shapes, you break S up into a bunch of tiny cubes. Each one is
scaled by | det(A)|; then you use calculus to reduce to the previous situation!

S

vol(T (S)) = 2 vol(S)

T

T (S)



Eigenvectors and Eigenvalues

Definition
Let A be an n × n matrix.

1. An eigenvector of A is a nonzero vector v in Rn such that Av = λv , for
some λ in R. In other words, Av is a multiple of v .

2. An eigenvalue of A is a number λ in R such that the equation Av = λv
has a nontrivial solution.

If Av = λv for v 6= 0, we say λ is the eigenvalue for v , and v is an
eigenvector for λ.

Definition
Let A be an n × n matrix and let λ be an eigenvalue of A. The λ-eigenspace
of A is the set of all eigenvectors of A with eigenvalue λ, plus the zero vector:

λ-eigenspace =
{
v in Rn | Av = λv

}
=
{
v in Rn | (A− λI )v = 0

}
= Nul

(
A− λI

)
.

You find a basis for the λ-eigenspace by finding the parametric vector form for
the general solution to (A− λI )x = 0 using row reduction.



The Characteristic Polynomial

Definition
Let A be an n × n matrix. The characteristic polynomial of A is

f (λ) = det(A− λI ).

Important Facts:

1. The characteristic polynomial is a polynomial of degree n, of the following
form:

f (λ) = (−1)nλn + an−1λ
n−1 + an−2λ

n−2 + · · ·+ a1λ+ a0.

2. The eigenvalues of A are the roots of f (λ).

3. The constant term f (0) = a0 is equal to det(A):

f (0) = det(A− 0I ) = det(A).

4. The characteristic polynomial of a 2× 2 matrix A is

f (λ) = λ2 − Tr(A)λ+ det(A).

Definition
The algebraic multiplicity of an eigenvalue λ is its multiplicity as a root of the
characteristic polynomial.



Similarity

Definition
Two n× n matrices A and B are similar if there is an invertible n× n matrix P
such that

A = PBP−1.

Important Facts:

1. Similar matrices have the same characteristic polynomial.

2. It follows that similar matrices have the same eigenvalues.

3. If A is similar to B and B is similar to C , then A is similar to C .

Caveats:

1. Matrices with the same characteristic polynomial need not be similar.

2. Similarity has nothing to do with row equivalence.

3. Similar matrices usually do not have the same eigenvectors.



Similarity
Geometric meaning

Let A = PBP−1, and let v1, v2, . . . , vn be the columns of P. These form a basis
B for Rn because P is invertible. Key relation: for any vector x in Rn,

[Ax ]B = B[x ]B.

This says:

A acts on the usual coordinates of x
in the same way that

B acts on the B-coordinates of x .

Example:

A =
1

4

(
5 3
3 5

)
B =

(
2 0
0 1/2

)
P =

(
1 1
1 −1

)
.

Then A = PBP−1. B acts on the usual coordinates by scaling the first
coordinate by 2, and the second by 1/2:

B

(
x1

x2

)
=

(
2x1

x2/2

)
.

The unit coordinate vectors are eigenvectors: e1 has eigenvalue 2, and e2 has
eigenvalue 1/2.



Similarity
Example

A =
1

4

(
5 3
3 5

)
B =

(
2 0
0 1/2

)
P =

(
1 1
1 −1

)
[Ax ]B = B[x ]B.

In this case, B =
{(

1
1

)
,
(

1
−1

)}
. Let v1 =

(
1
1

)
and v2 =

(
1
−1

)
.

To compute y = Ax :

1. Find [x ]B.

2. [y ]B = B[x ]B.

3. Compute y from [y ]B.

Say x =
(

2
0

)
.

1. x = v1 + v2 so [x ]B =
(

1
1

)
.

2. [y ]B = B
(

1
1

)
=
(

2
1/2

)
.

3. y = 2v1 + 1
2
v2 =

(
5/2
3/2

)
.

Picture:

v1

v2

x

Av1

Av2

AxA

A scales the v1-
coordinate by
2, and the v2-

coordinate by 1
2

.



Diagonalization

Definition
An n × n matrix A is diagonalizable if it is similar to a diagonal matrix:

A = PDP−1 for D diagonal.

It is easy to take powers of diagonalizable matrices:

An = PDnP−1.

The Diagonalization Theorem

An n × n matrix A is diagonalizable if and only if A has n linearly independent
eigenvectors. In this case, A = PDP−1 for

P =

 | | |
v1 v2 · · · vn
| | |

 D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 ,

where v1, v2, . . . , vn are linearly independent eigenvectors, and λ1, λ2, . . . , λn are
the corresponding eigenvalues (in the same order).

Corollary

An n × n matrix with n distinct eigenvalues is diagonalizable.



Non-Distinct Eigenvalues

Definition
Let A be a square matrix with eigenvalue λ. The geometric multiplicity of λ
is the dimension of the λ-eigenspace.

Theorem
Let A be an n × n matrix. Then A is diagonalizable if and only if, for every
eigenvalue λ, the algebraic multiplicity of λ is equal to the geometric
multiplicity.

(And all eigenvalues are real, unless you want to diagonalize over C.)

Notes:

I The algebraic and geometric multiplicities are both whole numbers ≥ 1,
and the algebraic multiplicity is always greater than or equal to the
geometric multiplicity. In particular, they’re equal if the algebraic
multiplicity is 1.

I Equivalently, A is diagonalizable if and only if the sum of the geometric
multiplicities of its eigenvalues is n.



Non-Distinct Eigenvalues
Example

A =

 1 1 0
0 1 0
0 0 2


This has eigenvalues 1 and 2, with algebraic multiplicities 2 and 1, respectively.

The geometric multiplicity of 2 is automatically 1.

Let’s compute the geometric multiplicity of 1:

A− I =

 0 1 0
0 0 0
0 0 1

 rref

 0 1 0
0 0 1
0 0 0

 .

This has 1 free variable, so the geometric multiplicity of 1 is 1. This is less
than the algebraic multiplicity, so the matrix is not diagonalizable.



Applications for Midterm 2

Selected Topics



Production equation

Example

Suppose the maritime sector requires d =

20
35
80

: 20,35 and 80 units of

production of sectors manufactoring, agriculture and services (MAS),
respectively.

How much production x do sectors MAS need to meet exactly the demand?

The matrix (I − C)−1 exists and your solution is

x = (I − C)−1d

Leontief says

Why?

1. The production itself requires some of the other sectors input: Cx

2. The remaining (surplus) production matches exactly the demand

x = Cx + d

We are still assuming that the inverse exists.



Leontief’s intuition

When initial demand is d

1. MAS must purchase (from themselves) Cd for the production stage.

2. There is a new order: Cd , which requires its own production stage C(Cd)

3. There is a new order: C 2d . . .

Going out of the loop: At some point new order C kd is negligible!

Total production is x ∼d + Cd + C 2d + · · ·+ C kd = (1 + C + · · ·+ C k)d



Stochastic Matrices

These arise very commonly in modeling of probabalistic phenomena (Markov
chains), where they are also called transition matrices.

Some examples:

I Matrices from the population dynamics

I Matrices from the equilibrium-prices economies

Definition
A square matrix A is stochastic if all of its entries are nonnegative, and the
sum of the entries of each column is 1.

We say A is regular if, for some k, all entries of Ak are positive.

Definition
A steady-state vector v of A is a non-zero vector with entries summing to 1
and such that Av = v .



Random walks on graphs (a.k.a Mouse on a maze)

A mouse moves freely between rooms/states = selects any with equal
probability.

I Initial state: The mouse is located at some room i : probabilities

v0 = (x1,
..., x5).

I Probability mouse starts at room 1 is x1 item Transition matrix:
vn+1 = Avn means that A dictates how probabilities change.

I Probability mouse is at room 3 after n steps of the walk:

third entry of vn.



Non-regular transition matrix
Disconnected states

Consider the following ‘transition graph’:

D

A B C

E

1

1

1
2

1
2

1
2

1
2

1
2

1
2

The transition matrix is


0 1 0 0 0
1 0 0 0 0
0 0 0 1

2
1
2

0 0 1
2

0 1
2

0 0 1
2

1
2

0

 .

Both


1
1
0
0
0

 and


0
0
1
1
1

, are eigenvectors with eigenvalue 1.

So there is more than one steady-state vector!



Find the actual Steady State w1
Red Box example

If one computes Nul(A− I ) and find that w ′ =

7
6
5


is an eigenvector with eigenvalue 1.

Then, to get a steady state, divide by 18 = 7 + 6 + 5 to get

w =
1

18

7
6
5

 ∼ (0.39, 0.33, 0.28).

So if you start with 100 total movies, eventually you’ll have
100w = (39, 33, 28) movies in the three locations, every day.

The long-run

Regardless of the intital location of a particular movie. Eventu-
ally, that movie will get ‘returned’ 39% of the times at location
1, 33% at location 2, and 28% at location 3.

The time spent on a state



Perron–Frobenius Theorem

These conclusions apply to any regular stochastic matrix—whether or not it is
diagonalizable!

If A is a regular stochastic matrix, then it admits a unique steady state
vector w , which spans the 1-eigenspace.

Moreover, for any vector v0 with entries summing to some number c,
the iterates v1 = Av0, v2 = Av1, . . . , vn = Avn−1, . . . , approach cw as
n gets large.

Perron–Frobenius Theorem

Translation:

I The 1-eigenspace of a regular stochastic matrix A is a line.

I The vector w has entries that sum to 1, and are strictly positive!

I Eventually, the movies arrange themselves according to the steady state
percentage, i.e., vn → cw .

(The sum c of the entries of v0 is the total number of movies)



Google’s PageRank: The Importance Rule

Each webpage has an associated importance, or rank. This is a positive
number.

If page P links to n other pages Q1,Q2, . . . ,Qn, then
each Qi should inherit 1

n
of P’s importance.

The Importance Rule

I A very important page links to your webpage: then your webpage is
important.

I A ton of unimportant pages link to your webpage: then it’s still important.

I But if only one crappy site links to yours, your page isn’t important.

A “random surfer” just randomly clicks on link after link.
The pages she spends the most time on should be the
most important. Stochastic terms: random walk on
the graph of hiperlinks. Look for steady-state vector!

Random surfer interpretation



The Google Matrix (Page and Brin’s solution)

Fix p in (0, 1), called the damping factor. (A typical value is p = 0.15.)

The Google Matrix is

M = (1− p) · A + p · B where B =
1

N


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

 ,

N is the total number of pages, and A is the importance matrix.

I Random surfer interpretation: with probability p the surfer gets bored and
starts over on a completely random page.

The PageRank vector is the steady state for the Google Matrix.

Fact

This exists and has positive entries by the Perron–Frobenius theorem.
The hard part is calculating it: the Google matrix has 1 gazillion rows.


