Review for Midterm 2

Selected Topics

Subspaces

Definition

A subspace of \mathbf{R}^{n} is a subset V of \mathbf{R}^{n} satisfying:

1. The zero vector is in V.
2. If u and v are in V, then $u+v$ is also in V.
3. If u is in V and c is in \mathbf{R}, then $c u$ is in V.

Examples:

- Any $\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$.
- The column space of a matrix: $\operatorname{Col} A=\operatorname{Span}\{$ columns of $A\}$.
- The null space of a matrix: $\operatorname{Nul} A=\{x \mid A x=0\}$.
- \mathbf{R}^{n} and $\{0\}$

If V can be written in any of the above ways, then it is automatically a subspace: you're done!

Subspaces

Example

Example

Is $V=\left\{\left(\begin{array}{l}x \\ y \\ z\end{array}\right)\right.$ in $\left.\mathbf{R}^{3} \mid x+y=0\right\}$ a subspace?

1. Since $0+0=0$, the zero vector is in V.
2. Let $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ and $\left(\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime}\end{array}\right)$ be arbitrary vectors in V.

- This means $x+y=0$ and $x^{\prime}+y^{\prime}=0$.
- We have to check if $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)+\left(\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime}\end{array}\right)=\left(\begin{array}{l}x+x^{\prime} \\ y+y^{\prime} \\ z+z^{\prime}\end{array}\right)$ is in V.
- This means $\left(x+x^{\prime}\right)+\left(y+y^{\prime}\right)=0$.

Indeed:

$$
\left(x+x^{\prime}\right)+\left(y+y^{\prime}\right)=(x+y)+\left(x^{\prime}+y^{\prime}\right)=0+0=0
$$

so condition (2) holds.

Subspaces

Example

Is $V=\left\{\left(\begin{array}{l}x \\ y \\ z\end{array}\right)\right.$ in $\left.\mathbf{R}^{3} \mid x+y=0\right\}$ a subspace?
3. Let $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ be in V and let c be a scalar.

- This means $x+y=0$.
- We have to check if $c\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}c x \\ c y \\ c z\end{array}\right)$ is in V.
- This means $c x+c y=0$.

Indeed:

$$
c x+c y=c(x+y)=c \cdot 0=0
$$

So condition (3) holds.
Since conditions (1), (2), and (3) hold, V is a subspace.

Basis of a Subspace

Definition

Let V be a subspace of \mathbf{R}^{n}. A basis of V is a set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ in \mathbf{R}^{n} such that:

1. $V=\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$, and
2. $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ is linearly independent.

The number of vectors in a basis is the dimension of V, and is written $\operatorname{dim} V$.

To check that \mathcal{B} is a basis for V, you have to check two things:

1. \mathcal{B} spans V.
2. \mathcal{B} is linearly independent.

This is what it means to justify the statement " \mathcal{B} is a basis for V."

Basis Theorem

Let V be a subspace of dimension m. Then:

- Any m linearly independent vectors in V form a basis for V.
- Any m vectors that span V form a basis for V.

So if you already know the dimension of V, you only have to check one.

Basis of a Subspace

Example

Verify that $\left\{\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\}$ is a basis for $V=\left\{\left(\begin{array}{l}x \\ y \\ z\end{array}\right)\right.$ in $\left.\mathbf{R}^{3} \mid x+y=0\right\}$.
0 . In V : both are in V because $1+(-1)=0$ and $0+0=0$.

1. Span: If $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ is in V, then $y=-x$, so we can write it as

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
x \\
-x \\
z
\end{array}\right)=x\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)+z\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) .
$$

2. Linearly independent:

$$
x\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)+y\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=0 \Longrightarrow\left(\begin{array}{c}
x \\
-x \\
y
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Longrightarrow x=y=0 .
$$

Knew a priori that $\operatorname{dim} V=2$: then only have to check 0 , then 1 or 2 .

Bases of $\operatorname{Col} A$ and $\operatorname{Nul} A$

$$
A=\left(\begin{array}{rrrr}
1 \\
-2 & - & \begin{array}{r}
2 \\
-3
\end{array} & 0 \\
4 & -1 \\
4 & 0 & -2
\end{array}\right) \quad \underset{\sim}{\text { rref }}\left(\begin{array}{rrrr}
1 & 0 & -8 & -7 \\
0 & 1 & 4 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

pivot columns $=$ basis $\{m m m \sim$ pivot columns in rref
So a basis for $\operatorname{Col} A$ is $\left\{\left(\begin{array}{r}1 \\ -2 \\ 2\end{array}\right),\left(\begin{array}{r}2 \\ -3 \\ 4\end{array}\right)\right\}$. A vector in $\operatorname{Col} A:\left(\begin{array}{r}1 \\ -2 \\ 2\end{array}\right)$.
Parametric vector form for solutions to $A x=0$:

A vector in $\operatorname{Nul} A$: any solution to $A x=0$, e.g., $x=\left(\begin{array}{c}8 \\ -4 \\ 1 \\ 0\end{array}\right)$.

Rank Theorem

Rank Theorem

If A is an $m \times n$ matrix, then

$$
\operatorname{rank} A+\operatorname{dim} \operatorname{Nul} A=n=\text { the number of columns of } A \text {. }
$$

In this case, $\operatorname{rank} A=2$ and $\operatorname{dim} \operatorname{Nul} A=2$, and $2+2=4$, which is the number of columns of A.

Determinants

Ways to compute them

1. Special formulas for 2×2 and 3×3 matrices.
2. For [upper or lower] triangular matrices:

$$
\operatorname{det} A=\text { (product of diagonal entries). }
$$

3. Cofactor expansion along any row or column:

$$
\begin{aligned}
\operatorname{det} A & =\sum_{j=1}^{n} a_{i j} C_{i j} \text { for any fixed } i \\
\operatorname{det} A & =\sum_{i=1}^{n} a_{i j} C_{i j} \text { for any fixed } j
\end{aligned}
$$

Start here for matrices with a row or column with lots of zeros.
4. By row reduction without scaling:

$$
\operatorname{det}(A)=(-1)^{\# \text { swaps }}(\text { product of diagonal entries in REF) }
$$

This is fastest for big and complicated matrices.
5. Cofactor expansion and any other of the above. (The cofactor formula is recursive.)

Determinants

Definition

The determinant is a function

$$
\text { det: }\{\text { square matrices }\} \longrightarrow \mathbf{R}
$$

with the following defining properties:

1. $\operatorname{det}\left(I_{n}\right)=1$
2. If we do a row replacement on a matrix (add a multiple of one row to another), the determinant does not change.
3. If we swap two rows of a matrix, the determinant scales by -1 .
4. If we scale a row of a matrix by k, the determinant scales by k.

When computing a determinant via row reduction, try to only use row replacement and row swaps. Then you never have to worry about scaling by the inverse.

Determinants

1. There is one and only one function det: $\{$ square matrices $\} \rightarrow \mathbf{R}$ satisfying the defining properties (1)-(4).
2. A is invertible if and only if $\operatorname{det}(A) \neq 0$.
3. If we row reduce A without row scaling, then

$$
\operatorname{det}(A)=(-1)^{\# \text { swaps }} \text { (product of diagonal entries in REF). }
$$

4. The determinant can be computed using any of the $2 n$ cofactor expansions.
5. $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B) \quad$ and $\quad \operatorname{det}\left(A^{-1}\right)=\operatorname{det}(A)^{-1}$.
6. $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$.
7. $|\operatorname{det}(A)|$ is the volume of the parallelepiped defined by the columns of A.
8. If A is an $n \times n$ matrix with transformation $T(x)=A x$, and S is a subset of \mathbf{R}^{n}, then the volume of $T(S)$ is $|\operatorname{det}(A)|$ times the volume of S. (Even for curvy shapes S.)
9. The determinant is multi-linear.

Determinants and Linear Transformations

Why is Property 8 true? For instance, if S is the unit cube, then $T(S)$ is the parallelepiped defined by the columns of A, since the columns of A are $T\left(e_{1}\right), T\left(e_{2}\right), \ldots, T\left(e_{n}\right)$. In this case, Property 8 is the same as Property 7.

For curvy shapes, you break S up into a bunch of tiny cubes. Each one is scaled by $|\operatorname{det}(A)| ;$ then you use calculus to reduce to the previous situation!

Eigenvectors and Eigenvalues

Definition

Let A be an $n \times n$ matrix.

1. An eigenvector of A is a nonzero vector v in \mathbf{R}^{n} such that $A v=\lambda v$, for some λ in \mathbf{R}. In other words, $A v$ is a multiple of v.
2. An eigenvalue of A is a number λ in \mathbf{R} such that the equation $A v=\lambda v$ has a nontrivial solution.
If $A v=\lambda v$ for $v \neq 0$, we say λ is the eigenvalue for v, and v is an eigenvector for λ.

Definition

Let A be an $n \times n$ matrix and let λ be an eigenvalue of A. The λ-eigenspace of A is the set of all eigenvectors of A with eigenvalue λ, plus the zero vector:

$$
\begin{aligned}
\lambda \text {-eigenspace } & =\left\{v \text { in } \mathbf{R}^{n} \mid A v=\lambda v\right\} \\
& =\left\{v \text { in } \mathbf{R}^{n} \mid(A-\lambda I) v=0\right\} \\
& =\operatorname{Nul}(A-\lambda I)
\end{aligned}
$$

You find a basis for the λ-eigenspace by finding the parametric vector form for the general solution to $(A-\lambda I) x=0$ using row reduction.

The Characteristic Polynomial

Definition

Let A be an $n \times n$ matrix. The characteristic polynomial of A is

$$
f(\lambda)=\operatorname{det}(A-\lambda I)
$$

Important Facts:

1. The characteristic polynomial is a polynomial of degree n, of the following form:

$$
f(\lambda)=(-1)^{n} \lambda^{n}+a_{n-1} \lambda^{n-1}+a_{n-2} \lambda^{n-2}+\cdots+a_{1} \lambda+a_{0}
$$

2. The eigenvalues of A are the roots of $f(\lambda)$.
3. The constant term $f(0)=a_{0}$ is equal to $\operatorname{det}(A)$:

$$
f(0)=\operatorname{det}(A-0 I)=\operatorname{det}(A)
$$

4. The characteristic polynomial of a 2×2 matrix A is

$$
f(\lambda)=\lambda^{2}-\operatorname{Tr}(A) \lambda+\operatorname{det}(A)
$$

Definition
The algebraic multiplicity of an eigenvalue λ is its multiplicity as a root of the characteristic polynomial.

Similarity

Definition

Two $n \times n$ matrices A and B are similar if there is an invertible $n \times n$ matrix P such that

$$
A=P B P^{-1}
$$

Important Facts:

1. Similar matrices have the same characteristic polynomial.
2. It follows that similar matrices have the same eigenvalues.
3. If A is similar to B and B is similar to C, then A is similar to C.

Caveats:

1. Matrices with the same characteristic polynomial need not be similar.
2. Similarity has nothing to do with row equivalence.
3. Similar matrices usually do not have the same eigenvectors.

Similarity

Geometric meaning

Let $A=P B P^{-1}$, and let $v_{1}, v_{2}, \ldots, v_{n}$ be the columns of P. These form a basis \mathcal{B} for \mathbf{R}^{n} because P is invertible. Key relation: for any vector x in \mathbf{R}^{n},

$$
[A x]_{\mathcal{B}}=B[x]_{\mathcal{B}}
$$

This says:
A acts on the usual coordinates of x in the same way that
B acts on the \mathcal{B}-coordinates of x.
Example:

$$
A=\frac{1}{4}\left(\begin{array}{cc}
5 & 3 \\
3 & 5
\end{array}\right) \quad B=\left(\begin{array}{cc}
2 & 0 \\
0 & 1 / 2
\end{array}\right) \quad P=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) .
$$

Then $A=P B P^{-1}$. B acts on the usual coordinates by scaling the first coordinate by 2 , and the second by $1 / 2$:

$$
B\binom{x_{1}}{x_{2}}=\binom{2 x_{1}}{x_{2} / 2} .
$$

The unit coordinate vectors are eigenvectors: e_{1} has eigenvalue 2 , and e_{2} has eigenvalue $1 / 2$.

Similarity

Example

$A=\frac{1}{4}\left(\begin{array}{cc}5 & 3 \\ 3 & 5\end{array}\right) \quad B=\left(\begin{array}{cc}2 & 0 \\ 0 & 1 / 2\end{array}\right) \quad P=\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right) \quad[A x]_{\mathcal{B}}=B[x]_{\mathcal{B}}$.
In this case, $\mathcal{B}=\left\{\binom{1}{1},\binom{1}{-1}\right\}$. Let $v_{1}=\binom{1}{1}$ and $v_{2}=\binom{1}{-1}$.
To compute $y=A x$:

$$
\begin{aligned}
& \text { Say } x=\binom{2}{0} . \\
& \text { 1. } x=v_{1}+v_{2} \text { so }[x]_{\mathcal{B}}=\binom{1}{1} . \\
& \text { 2. }[y]_{\mathcal{B}}=B\binom{1}{1}=\binom{2}{1 / 2} . \\
& \text { 3. } y=2 v_{1}+\frac{1}{2} v_{2}=\binom{5 / 2}{3 / 2} .
\end{aligned}
$$

2. $[y]_{\mathcal{B}}=B[x]_{\mathcal{B}}$.
3. Compute y from $[y]_{\mathcal{B}}$.

Picture:

Diagonalization

Definition

An $n \times n$ matrix A is diagonalizable if it is similar to a diagonal matrix:

$$
A=P D P^{-1} \quad \text { for } D \text { diagonal. }
$$

It is easy to take powers of diagonalizable matrices:

$$
A^{n}=P D^{n} P^{-1} .
$$

The Diagonalization Theorem

An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors. In this case, $A=P D P^{-1}$ for

$$
P=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{n} \\
\mid & \mid & & \mid
\end{array}\right) \quad D=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right)
$$

where $v_{1}, v_{2}, \ldots, v_{n}$ are linearly independent eigenvectors, and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the corresponding eigenvalues (in the same order).

Corollary
An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.

Non-Distinct Eigenvalues

Definition

Let A be a square matrix with eigenvalue λ. The geometric multiplicity of λ is the dimension of the λ-eigenspace.

Theorem

Let A be an $n \times n$ matrix. Then A is diagonalizable if and only if, for every eigenvalue λ, the algebraic multiplicity of λ is equal to the geometric multiplicity.
(And all eigenvalues are real, unless you want to diagonalize over C.)

Notes:

- The algebraic and geometric multiplicities are both whole numbers ≥ 1, and the algebraic multiplicity is always greater than or equal to the geometric multiplicity. In particular, they're equal if the algebraic multiplicity is 1.
- Equivalently, A is diagonalizable if and only if the sum of the geometric multiplicities of its eigenvalues is n.

Non-Distinct Eigenvalues

Example

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

This has eigenvalues 1 and 2 , with algebraic multiplicities 2 and 1 , respectively.
The geometric multiplicity of 2 is automatically 1 .
Let's compute the geometric multiplicity of 1 :

$$
A-I=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \xrightarrow[\sim]{\text { rref }}\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) .
$$

This has 1 free variable, so the geometric multiplicity of 1 is 1 . This is less than the algebraic multiplicity, so the matrix is not diagonalizable.

Applications for Midterm 2

Selected Topics

Production equation

Example

Suppose the maritime sector requires $d=\left(\begin{array}{l}20 \\ 35 \\ 80\end{array}\right): 20,35$ and 80 units of production of sectors manufactoring, agriculture and services (MAS), respectively.

How much production x do sectors MAS need to meet exactly the demand?

Why?

1. The production itself requires some of the other sectors input: C_{x}
2. The remaining (surplus) production matches exactly the demand

$$
x=C x+d
$$

We are still assuming that the inverse exists.

Leontief's intuition

When initial demand is d

1. MAS must purchase (from themselves) $C d$ for the production stage.
2. There is a new order: $C d$, which requires its own production stage $C(C d)$
3. There is a new order: $C^{2} d \ldots$

Going out of the loop: At some point new order $C^{k} d$ is negligible!
Total production is $x \sim d+C d+C^{2} d+\cdots+C^{k} d=\left(1+C+\cdots+C^{k}\right) d$

Stochastic Matrices

These arise very commonly in modeling of probabalistic phenomena (Markov chains), where they are also called transition matrices.

Some examples:

- Matrices from the population dynamics
- Matrices from the equilibrium-prices economies

Definition

A square matrix A is stochastic if all of its entries are nonnegative, and the sum of the entries of each column is 1 .
We say A is regular if, for some k, all entries of A^{k} are positive.

Definition

A steady-state vector v of A is a non-zero vector with entries summing to 1 and such that $A v=v$.

Random walks on graphs (a.k.a Mouse on a maze)

A mouse moves freely between rooms/states = selects any with equal probability.

$$
P=\left[\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
0 & 1 / 3 & 1 / 4 & 0 & 0 \\
1 / 2 & 0 & 1 / 4 & 1 / 3 & 0 \\
1 / 2 & 1 / 3 & 0 & 1 / 3 & 1 / 2 \\
0 & 1 / 3 & 1 / 4 & 0 & 1 / 2 \\
0 & 0 & 1 / 4 & 1 / 3 & 0
\end{array}\right] \begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5
\end{aligned}
$$

- Initial state: The mouse is located at some room i : probabilities

$$
v_{0}=\left(x_{1}, \therefore, x_{5}\right)
$$

- Probability mouse starts at room 1 is x_{1} item Transition matrix: $v_{n+1}=A v_{n}$ means that A dictates how probabilities change.
- Probability mouse is at room 3 after n steps of the walk: third entry of v_{n}.

Non-regular transition matrix

Disconnected states

Consider the following 'transition graph':

The transition matrix is $\left(\begin{array}{ccccc}0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0\end{array}\right)$.
Both $\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 1 \\ 1\end{array}\right)$, are eigenvectors with eigenvalue 1.
So there is more than one steady-state vector!

Find the actual Steady State w_{1}

Red Box example

If one computes $\operatorname{Nul}(A-I)$ and find that $w^{\prime}=\left(\begin{array}{l}7 \\ 6 \\ 5\end{array}\right)$
is an eigenvector with eigenvalue 1 .
Then, to get a steady state, divide by $18=7+6+5$ to get

$$
w=\frac{1}{18}\left(\begin{array}{l}
7 \\
6 \\
5
\end{array}\right) \sim(0.39,0.33,0.28)
$$

The long-run
So if you start with 100 total movies, eventually you'll have $100 w=(39,33,28)$ movies in the three locations, every day.

The time spent on a state

Regardless of the intital location of a particular movie. Eventually, that movie will get 'returned' 39% of the times at location $1,33 \%$ at location 2 , and 28% at location 3.

Perron-Frobenius Theorem

These conclusions apply to any regular stochastic matrix-whether or not it is diagonalizable!

Perron-Frobenius Theorem

If A is a regular stochastic matrix, then it admits a unique steady state vector w, which spans the 1-eigenspace.
Moreover, for any vector v_{0} with entries summing to some number c, the iterates $v_{1}=A v_{0}, v_{2}=A v_{1}, \ldots, v_{n}=A v_{n-1}, \ldots$, approach $c w$ as n gets large.

Translation:

- The 1-eigenspace of a regular stochastic matrix A is a line.
- The vector w has entries that sum to 1 , and are strictly positive!
- Eventually, the movies arrange themselves according to the steady state percentage, i.e., $v_{n} \rightarrow c w$.
(The sum c of the entries of v_{0} is the total number of movies)

Google's PageRank: The Importance Rule

Each webpage has an associated importance, or rank. This is a positive number.

The Importance Rule
If page P links to n other pages $Q_{1}, Q_{2}, \ldots, Q_{n}$, then each Q_{i} should inherit $\frac{1}{n}$ of P^{\prime} s importance.

- A very important page links to your webpage: then your webpage is important.
- A ton of unimportant pages link to your webpage: then it's still important.
- But if only one crappy site links to yours, your page isn't important.

Random surfer interpretation

A "random surfer" just randomly clicks on link after link. The pages she spends the most time on should be the most important. Stochastic terms: random walk on the graph of hiperlinks. Look for steady-state vector!

The Google Matrix (Page and Brin's solution)

Fix p in $(0,1)$, called the damping factor. (A typical value is $p=0.15$.)
The Google Matrix is

$$
M=(1-p) \cdot A+p \cdot B \quad \text { where } \quad B=\frac{1}{N}\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 1
\end{array}\right) \text {, }
$$

N is the total number of pages, and A is the importance matrix.

- Random surfer interpretation: with probability p the surfer gets bored and starts over on a completely random page.

Fact

The PageRank vector is the steady state for the Google Matrix.

This exists and has positive entries by the Perron-Frobenius theorem.
The hard part is calculating it: the Google matrix has 1 gazillion rows.

