
Midterm 3

Selected topics



Motivation
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Example with a line: The closest point to x in L is projL(x) = x·u
u·u u

L

u

x

xL = projL(x)

xL⊥

Let u =
(
3
2

)
and let L = Span{u}. Let x =

(−6
4

)
. In this case,

xL = projL(x) = −10

13

(
3
2

)
xL⊥ = x − projL(x) =

(
−6
4

)
+

10

13

(
3
2

)
.



Motivation

The procedures in §6 start with an orthogonal basis {u1, u2, . . . , um}.
I Find the B-coordinates of a vector x using dot products:

x =
m∑
i=1

x · ui
ui · ui

ui

I Find the orthogonal projection of a vector x onto the span W of
u1, u2, . . . , um:

projW (x) =
m∑
i=1

x · ui
ui · ui

ui .

Problem: What if your basis isn’t orthogonal?

Solution: The Gram–Schmidt process: take any basis and make it orthogonal.



Orthogonal Complements

Definition
Let W be a subspace of Rn. Its orthogonal complement is

W⊥ =
{
v in Rn | v · w = 0 for all w in W

}
read “W perp”.

W⊥ is orthogonal complement
AT is transpose

Pictures:

The orthogonal complement of a line in R2 is the
perpendicular line.

W
W⊥

The orthogonal complement of a line in R3 is the
perpendicular plane.

W⊥
W

The orthogonal complement of a plane in R3 is the
perpendicular line.

W
W⊥



Orthogonal Complements
Basic properties

Facts: Let W be a subspace of Rn.

1. W⊥ is also a subspace of Rn

2. (W⊥)⊥ = W
3. dimW + dimW⊥ = n
4. If W = Span{v1, v2, . . . , vm}, then

W⊥ = all vectors orthogonal to each v1, v2, . . . , vm

=
{
x in Rn | x · vi = 0 for all i = 1, 2, . . . ,m

}
= Nul


— vT

1 —
— vT

2 —...
— vT

m —

 .

Span{v1, v2, . . . , vm}⊥ = Nul


— vT

1 —
— vT

2 —...
— vT

m —


Property 4



The Gram–Schmidt Process
Example 2: Three vectors

Find an orthogonal basis {u1, u2, u3} for W = Span{v1, v2, v3} = R3, where

v1 =

1
1
0

 v2 =

1
1
1

 v3 =

3
1
1

 .

Run Gram–Schmidt:

1. u1 = v1

2. u2 = v2 −
v2 · u1
u1 · u1

u1 =

1
1
1

− 2

2

1
1
0

 =

0
0
1


3. u3 = v3 −

v3 · u1
u1 · u1

u1 −
v3 · u2
u2 · u2

u2

=

3
1
1

− 4

2

1
1
0

− 1

1

0
0
1

 =

 1
−1
0


Remember: This is an orthogonal basis for the same subspace W .



QR Factorization

Recall: A set of vectors {v1, v2, . . . , vm} is orthonormal if they are orthogonal
unit vectors: vi · vj = 0 when i 6= j , and vi · vi = 1.

A matrix Q has orthonormal columns if and only if QTQ = I .

Orthonormal

QR Factorization Theorem
Let A be a matrix with linearly independent columns. Then

A = QR

where Q has orthonormal columns and R is upper-triangular with positive
diagonal entries.

I The columns of A are a basis for W = ColA.

I The columns of Q are equivalent basis coming from Gram–Schmidt

(as applied to the columns of A), after normalizing to unit vectors.

I The columns of R come from the steps in Gram–Schmidt.



QR Factorization
Through a second example

Find the QR factorization of A =


1 −1 4
1 4 −2
1 4 −2
1 −1 0

.

(The columns are vectors from example 3.)

Step 1: Run Gram–Schmidt and solve for v1, v2, v3 in terms of u1, u2, u3:

u1 = v1 =


1
1
1
1

 v1 = u1

u2 = v2 −
v2 · u1
u1 · u1

u1 = v2 −
3

2
u1 =


−5/2

5/2
5/2
−5/2

 v2 =
3

2
u1 + u2

u3 = v3 −
v3 · u1
u1 · u1

u1 −
v3 · u2
u2 · u2

u2 = v3 +
4

5
u2 =


2
0
0
−2

 v3 = −4

5
u2 + u3



QR Factorization
Through a second example, continued

v1 = 1 u1 v2 =
3

2
u1 + 1 u2 v3 = 0 u1 −

4

5
u2 + 1 u3

Step 2: Write A = Q̂R̂, where Q̂ has orthogonal columns u1, u2, u3 and R̂ is
upper-triangular with 1s on the diagonal.

Q̂ =

 | | |
u1 u2 u3
| | |

 =


1 −5/2 2
1 5/2 0
1 5/2 0
1 −5/2 −2


R̂ =

 1 3/2 0
0 1 −4/5
0 0 1





QR Factorization
Through a second example, continued

A = Q̂R̂ Q̂ =


1 −5/2 2
1 5/2 0
1 5/2 0
1 −5/2 −2

 R̂ =

 1 3/2 0
0 1 −4/5
0 0 1


Step 3: To get Q and R, normalize the columns of Q̂ and scale the rows of R̂:

Q =

 | | |
u1/‖u1‖ u2/‖u2‖ u3/‖u3‖
| | |


R =

 1 · ‖u1‖ 3/2 · ‖u1‖ 0 · ‖u1‖
0 1 · ‖u2‖ −4/5 · ‖u2‖
0 0 1 · ‖u3‖


The final QR decomposition is

A = QR Q =


1/2 −1/2 1/

√
2

1/2 1/2 0
1/2 1/2 0

1/2 −1/2 −1/
√

2

 R =

 2 3 0
0 5 −4

0 0 2
√

2

 .



Least Squares Solutions

Definition
Let A be an m× n matrix. A least squares solution to Ax = b is a vector x̂ in
Rn such that

Ax̂ = b̂ = projCol A(b).

A least squares solution x̂ solves Ax = b as closely as possible.

ColA

Ax

Ax

Ax

Ax̂ = b̂ = projCol A(b)

b

b − Ax̂
Note that b − Ax̂
is in (ColA)⊥.

In distance terms, for all x in Rn:

‖b − Ax̂‖ ≤ ‖b − Ax‖



Least Squares Solutions: General Solution

Theorem
Let A be a m × n matrix. Least squares solutions to Ax = b are any of the
solutions to

(ATA)x̂ = ATb.

Now we can solve the problem without computing b̂ first.

This is just another sysmtem of equations,
but now it is consistent and uses square matrix ATA!

ColA

Ax

Ax

Ax

Ax̂ = b̂ = projCol A(b)

b

b − Ax̂

Note that b − Ax̂
is in (ColA)⊥.

Why is this true?

Recall: (ColA)⊥ = Nul(AT ).

Now, b − Ax̂ is in (ColA)⊥

if and only if

AT (b − Ax̂) = 0.

In other words, ATAx̂ = ATb.



Least Squares Solutions
Example 1

Find the least squares solutions to Ax = b where:

A =

 1 0
1 1
1 2

 b =

6
0
0

 .

First: Compute new matrix and vector

ATA =

(
1 1 1
0 1 2

) 1 0
1 1
1 2

 =

(
3 3
3 5

)
and

ATb =

(
1 1 1
0 1 2

)6
0
0

 =

(
6
0

)
.

Second: Solve the new system; row reduce:(
3 3 6
3 5 0

) (
1 0 5
0 1 −3

)
.

So the unique least squares solution is x̂ =

(
5
−3

)
.



Least Squares Solutions
Example 2

Find the least squares solutions to Ax = b where:

A =

 2 0
−1 1

0 2

 b =

 1
0
−1

 .

First: Compute new matrix and vector

ATA =

(
2 −1 0
0 1 2

) 2 0
−1 1

0 2

 =

(
5 −1
−1 5

)
and

ATb =

(
2 −1 0
0 1 2

) 1
0
−1

 =

(
2
−2

)
.

Second: Solve the new system; row reduce:(
5 −1 2
−1 5 −2

) (
1 0 1/3
0 1 −1/3

)
.

So the unique least squares solution is x̂ =

(
1/3
−1/3

)
.



Data Modeling: Best fit line

Best fit line minimizes the sum of the squares of the vertical
distances from the data points to the line.

What does it minimize?

(0, 6)

(1, 0)

(2, 0)

1

−2

1

y
=

−
3x

+
5



Data modeling: best fit parabola

What least squares problem Ax = b finds the best parabola through the
points (−1, 0.5), (1,−1), (2,−0.5), (3, 2)?

The general equation for a parabola is

ax2 + bx + c = y .

So we want to solve:

a(−1)2 + b(−1) + c = 0.5

a(1)2 + b(1) + c = −1

a(2)2 + b(2) + c = −0.5

a(3)2 + b(3) + c = 2

In matrix form: 
1 −1 1
1 1 1
4 2 1
9 3 1


a
b
c

 =


0.5
−1
−0.5

2

.
Answer: â = 53

88
, b̂ = 379

440
, ĉ = 82

88
so best fit is: 53x2 − 379

5
x − 82 = 88y



Data modeling: best fit parabola
Picture

(−1, 0.5)

(1,−1)
(2,−0.5)

(3, 2)

88y = 53x2 − 379

5
x − 82



Multiple regression
Expert’s notation

The model to fit:

The equation display y = Xβ + ε:

We want to minimize the length of ε.
In last section we don’t write it as part of the equation.

The error



Symmetric matrices

Definition
An n × n matrix is symmetric if A = AT .

An n× n matrix A is orthogonally diagonalizable if and only if A
is symmetric.

Theorem

The easy observation: Let A = PDPT with D diagonal and P orthonormal.

Just check A is symmetric, that is A = AT :

(PDPT︸ ︷︷ ︸) = (PT )TDTPT = PDPT︸ ︷︷ ︸
AAAAAAAAAAAAAAAAAAA

The difficult part (omitted here) is: if A = AT then

an orthogonal diagonalization do exists.



Summary

An n × n symmetric matrix A has the following properties.

I A has n real eigenvalues, counting multiplicities

I For each eigenvalue,
the dimension of the λ-eigenspaces equal the algebraic multiplicity.

I The eigenspaces are mutually orthogonal!

eigenvectors corresponding to different eigenvalues are orthogonal.

I A is orthogonally diagonalizable.

Spectral Theorem for Symmetric matrices



Example: Orthogonally diagonalizable

Example

Orthogonally diagonalize the matrix A =

 3 −2 4
−2 6 2
4 2 3


its charactheristic equation is −(λ− 7)2(λ+ 2) = 0.

Find a basis for each λ-eigenspace:

For λ = 7:


1

0
1

 ,

−1/2
1
0

 For λ = −2:


 −1
−1/2

1


Is the set of eigenvectors above already orthogonal?
orthonormal?

A suitable P

A = P

 7 0 0
0 7 0
0 0 −2

P−1



Example: Orthogonally diagonalizable
continued

Verify:

I v3 =

 −1
−1/2

1

 is already orthogonal to v1 =

1
0
1

 and v2 =

−1/2
1
0


I but v1 · v2 6= 0.

Tackle this: Use Gram-Schmidt

u1 = v1

u2 = v2 −
v2 · v1
v1 · v1

v1 =

−1/2
1
0

− −1/2

2

1
0
1

 =

−1/4
1

1/4


And u3 = v3. Then normalize!

P =

 1/
√

2 −1
√

18 −2/3

0 4
√

18 −1/3

1/
√

2 1
√

18 2/3

 , D =

 7 0 0
0 7 0
0 0 −2





Example: Spectral Decomposition

Example

Construct a spectral decomposition of the matrix A with orthogonal
diagonalization

A =

(
7 2
2 4

)
=

(
2/
√

5 −1/
√

5

1/
√

5 2/
√

5

)(
8 0
0 3

)(
2/
√

5 1/
√

5

−1/
√

5 2/
√

5

)

Solution: Then A = 8u1u
T
1 + 3u2u

T
2 , each matrix is

u1u
T
1 =

(
4/5 2/5
2/5 1/5

)

u2u
T
2 =

(
1/5 −2/5
−2/5 4/5

)

Check: 8u1u
T
1 + 3u2u

T
2 =

(
32/5 16/5
16/5 8/5

)
+

(
3/5 −6/5
−6/5 12/5

)
= A



Back to change of variables

A consequence of the spectral theorem for symmetric matrices

Let A be n × n symmetric matrix.

Then there is an orthogonal change of variable x = Py that transforms
the quadratic form xTAx into a quadratic form

yTDy with no cross-product terms.

The principal axes theorem

If A = PDP−1 with PT = P−1 and D diagonal,
then

xTAx = xTP︸︷︷︸ D P−1x︸ ︷︷ ︸
AyT D y



Change of variables

Example

Make a change of variables that transforms the quadratic form

Q(x1, x2) = x2
1 − 5x2

2 − 8x1x2

into a quadratic form with no cross-product terms

General Formula: there is an orthonormal matrix P such that

A = P

(
λ1 0
0 λ2

)
PT

the change of variables is given by y = PT x = P−1x .

In this case, First A =

(
1 −4
−4 5

)
, λ1 = 3, λ2 = −7 and P = 1√

5

(
2 1
−1 2

)
Then

yT

(
3 0
0 −7

)
y = 3y 2

1 − 7y 2
2



Classify quadratic forms

A quadratic form is

I Indefinite: if Q(x) assumes both positive
and negative values

I Positive definite: if Q(x) > 0 for all x 6= 0,

I Negative definite: if Q(x) < 0 for all
x 6= 0,

The prefix semi means e.g.Q(x)≥ 0 for all
x 6= 0.

You can classify quadratic from know-
ing its eigenvalues (evaluate on princi-
pal axes)
e.g. Positive definite forms have all
eigenvalues positive.

Eigenvalues


