Midterm 3
Selected topics

Motivation

Example with a line: The closest point to x in L is $\operatorname{proj}_{L}(x)=\frac{x \cdot u}{u \cdot u} u$

Let $u=\binom{3}{2}$ and let $L=\operatorname{Span}\{u\}$. Let $x=\binom{-6}{4}$. In this case,

$$
x_{L}=\operatorname{proj}_{L}(x)=-\frac{10}{13}\binom{3}{2} \quad x_{L \perp}=x-\operatorname{proj}_{L}(x)=\binom{-6}{4}+\frac{10}{13}\binom{3}{2} .
$$

Motivation

The procedures in $\S 6$ start with an orthogonal basis $\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$.

- Find the \mathcal{B}-coordinates of a vector x using dot products:

$$
x=\sum_{i=1}^{m} \frac{x \cdot u_{i}}{u_{i} \cdot u_{i}} u_{i}
$$

- Find the orthogonal projection of a vector x onto the span W of $u_{1}, u_{2}, \ldots, u_{m}$:

$$
\operatorname{proj}_{W}(x)=\sum_{i=1}^{m} \frac{x \cdot u_{i}}{u_{i} \cdot u_{i}} u_{i}
$$

Problem: What if your basis isn't orthogonal?
Solution: The Gram-Schmidt process: take any basis and make it orthogonal.

Orthogonal Complements

Definition

Let W be a subspace of \mathbf{R}^{n}. Its orthogonal complement is

$$
W_{\uparrow}^{\perp}=\left\{v \text { in } \mathbf{R}^{n} \mid v \cdot w=0 \text { for all } w \text { in } W\right\} \quad \text { read " } W \text { perp". }
$$

Pictures:

The orthogonal complement of a line in \mathbf{R}^{2} is the perpendicular line.

The orthogonal complement of a line in \mathbf{R}^{3} is the perpendicular plane.

The orthogonal complement of a plane in \mathbf{R}^{3} is the perpendicular line.

Orthogonal Complements

Basic properties

Facts: Let W be a subspace of \mathbf{R}^{n}.

1. W^{\perp} is also a subspace of R^{n}
2. $\left(W^{\perp}\right)^{\perp}=W$
3. $\operatorname{dim} W+\operatorname{dim} W^{\perp}=n$
4. If $W=\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$, then

$$
\begin{aligned}
W^{\perp} & =\text { all vectors orthogonal to each } v_{1}, v_{2}, \ldots, v_{m} \\
& =\left\{x \text { in } \mathbf{R}^{n} \mid x \cdot v_{i}=0 \text { for all } i=1,2, \ldots, m\right\} \\
& =\operatorname{Nul}\left(\begin{array}{c}
-v_{1}^{T}- \\
-v_{2}^{T}- \\
\vdots \\
-v_{m}^{T}-
\end{array}\right)
\end{aligned}
$$

Property 4

$$
\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}^{\perp}=\mathrm{Nul}\left(\begin{array}{c}
-v_{1}^{T}- \\
-v_{2}^{T}- \\
\vdots \\
-v_{m}^{T}-
\end{array}\right)
$$

The Gram-Schmidt Process

Example 2: Three vectors

Find an orthogonal basis $\left\{u_{1}, u_{2}, u_{3}\right\}$ for $W=\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}\right\}=\mathbf{R}^{3}$, where

$$
v_{1}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) \quad v_{2}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \quad v_{3}=\left(\begin{array}{l}
3 \\
1 \\
1
\end{array}\right)
$$

Run Gram-Schmidt:

1. $u_{1}=v_{1}$
2. $u_{2}=v_{2}-\frac{v_{2} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)-\frac{2}{2}\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$
3. $u_{3}=v_{3}-\frac{v_{3} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}-\frac{v_{3} \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}$

$$
=\left(\begin{array}{l}
3 \\
1 \\
1
\end{array}\right)-\frac{4}{2}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)-\frac{1}{1}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)
$$

Remember: This is an orthogonal basis for the same subspace W.

$Q R$ Factorization

Recall: A set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ is orthonormal if they are orthogonal unit vectors: $v_{i} \cdot v_{j}=0$ when $i \neq j$, and $v_{i} \cdot v_{i}=1$.

Orthonormal

A matrix Q has orthonormal columns if and only if $Q^{T} Q=I$.

QR Factorization Theorem
Let A be a matrix with linearly independent columns. Then

$$
A=Q R
$$

where Q has orthonormal columns and R is upper-triangular with positive diagonal entries.

- The columns of A are a basis for $W=\operatorname{Col} A$.
- The columns of Q are equivalent basis coming from Gram-Schmidt (as applied to the columns of A), after normalizing to unit vectors.
- The columns of R come from the steps in Gram-Schmidt.

$Q R$ Factorization

Through a second example
Find the $Q R$ factorization of $A=\left(\begin{array}{ccc}1 & -1 & 4 \\ 1 & 4 & -2 \\ 1 & 4 & -2 \\ 1 & -1 & 0\end{array}\right)$.
(The columns are vectors from example 3.)
Step 1: Run Gram-Schmidt and solve for v_{1}, v_{2}, v_{3} in terms of u_{1}, u_{2}, u_{3} :

$$
\begin{aligned}
& u_{1}=v_{1}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right) \\
& u_{2}=v_{2}-\frac{v_{2} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}=v_{2}-\frac{3}{2} u_{1}=\left(\begin{array}{r}
-5 / 2 \\
5 / 2 \\
5 / 2 \\
-5 / 2
\end{array}\right) \quad v_{2}=\frac{3}{2} u_{1}+u_{2} \\
& u_{3}=v_{3}-\frac{v_{3} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}-\frac{v_{3} \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}=v_{3}+\frac{4}{5} u_{2}=\left(\begin{array}{r}
2 \\
0 \\
0 \\
-2
\end{array}\right) \quad v_{3}=-\frac{4}{5} u_{2}+u_{3}
\end{aligned}
$$

$Q R$ Factorization

Through a second example, continued

$$
v_{1}=1 u_{1} \quad v_{2}=\frac{3}{2} u_{1}+1 u_{2} \quad v_{3}=0 u_{1}-\frac{4}{5} u_{2}+1 u_{3}
$$

Step 2: Write $A=\widehat{Q} \widehat{R}$, where \widehat{Q} has orthogonal columns u_{1}, u_{2}, u_{3} and \widehat{R} is upper-triangular with 1 s on the diagonal.

$$
\begin{aligned}
& \widehat{Q}=\left(\begin{array}{ccc}
\mid & \mid & \mid \\
u_{1} & u_{2} & u_{3} \\
\mid & \mid & \mid
\end{array}\right)=\left(\begin{array}{rrr}
1 & -5 / 2 & 2 \\
1 & 5 / 2 & 0 \\
1 & 5 / 2 & 0 \\
1 & -5 / 2 & -2
\end{array}\right) \\
& \widehat{R}=\left(\begin{array}{ccc}
1 & 3 / 2 & 0 \\
0 & 1 & -4 / 5 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

$Q R$ Factorization

Through a second example, continued

$$
A=\widehat{Q} \widehat{R} \quad \widehat{Q}=\left(\begin{array}{rrr}
1 & -5 / 2 & 2 \\
1 & 5 / 2 & 0 \\
1 & 5 / 2 & 0 \\
1 & -5 / 2 & -2
\end{array}\right) \quad \widehat{R}=\left(\begin{array}{ccc}
1 & 3 / 2 & 0 \\
0 & 1 & -4 / 5 \\
0 & 0 & 1
\end{array}\right)
$$

Step 3: To get Q and R, normalize the columns of \widehat{Q} and scale the rows of \widehat{R} :

$$
\begin{aligned}
Q & =\left(\begin{array}{ccr}
\mid & \mid & \mid \\
u_{1} /\left\|u_{1}\right\| & u_{2} /\left\|u_{2}\right\| & u_{3} /\left\|u_{3}\right\| \\
\mid & \mid & \mid
\end{array}\right) \\
R & =\left(\begin{array}{rrr}
1 \cdot\left\|u_{1}\right\| & 3 / 2 \cdot\left\|u_{1}\right\| & 0 \cdot\left\|u_{1}\right\| \\
0 & 1 \cdot\left\|u_{2}\right\| & -4 / 5 \cdot\left\|u_{2}\right\| \\
0 & 0 & 1 \cdot\left\|u_{3}\right\|
\end{array}\right)
\end{aligned}
$$

The final $Q R$ decomposition is

$$
A=Q R \quad Q=\left(\begin{array}{rrr}
1 / 2 & -1 / 2 & 1 / \sqrt{2} \\
1 / 2 & 1 / 2 & 0 \\
1 / 2 & 1 / 2 & 0 \\
1 / 2 & -1 / 2 & -1 / \sqrt{2}
\end{array}\right) \quad R=\left(\begin{array}{ccc}
2 & 3 & 0 \\
0 & 5 & -4 \\
0 & 0 & 2 \sqrt{2}
\end{array}\right)
$$

Least Squares Solutions

Definition

Let A be an $m \times n$ matrix. A least squares solution to $A x=b$ is a vector \widehat{x} in \mathbf{R}^{n} such that

$$
A \widehat{x}=\widehat{b}=\operatorname{proj}_{C o l} A(b)
$$

A least squares solution \widehat{x} solves $A x=b$ as closely as possible.

Note that $b-A \widehat{x}$ is in $(\operatorname{Col} A)^{\perp}$.

In distance terms, for all x in \mathbf{R}^{n} :

$$
\|b-A \widehat{x}\| \leq\|b-A x\|
$$

Least Squares Solutions: General Solution

Theorem
Let A be a $m \times n$ matrix. Least squares solutions to $A x=b$ are any of the solutions to

$$
\left(A^{T} A\right) \widehat{x}=A^{T} b
$$

Now we can solve the problem without computing \widehat{b} first.

This is just another sysmtem of equations, but now it is consistent and uses square matrix $A^{\top} A$!

Why is this true?

Recall: $(\operatorname{Col} A)^{\perp}=\operatorname{Nul}\left(A^{T}\right)$.
Now, $b-A \widehat{x}$ is in $(\operatorname{Col} A)^{\perp}$ if and only if

$$
A^{T}(b-A \widehat{x})=0
$$

In other words, $A^{T} A \widehat{x}=A^{T} b$.

Least Squares Solutions

Example 1

Find the least squares solutions to $A x=b$ where:

$$
A=\left(\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right) \quad b=\left(\begin{array}{l}
6 \\
0 \\
0
\end{array}\right)
$$

First: Compute new matrix and vector

$$
A^{\top} A=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right)=\left(\begin{array}{ll}
3 & 3 \\
3 & 5
\end{array}\right)
$$

and

$$
A^{\top} b=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right)\left(\begin{array}{l}
6 \\
0 \\
0
\end{array}\right)=\binom{6}{0}
$$

Second: Solve the new system; row reduce:

$$
\left(\begin{array}{ll|l}
3 & 3 & 6 \\
3 & 5 & 0
\end{array}\right) \text { an> }\left(\begin{array}{ll|r}
1 & 0 & 5 \\
0 & 1 & -3
\end{array}\right) .
$$

So the unique least squares solution is $\widehat{x}=\binom{5}{-3}$.

Least Squares Solutions

Example 2

Find the least squares solutions to $A x=b$ where:

$$
A=\left(\begin{array}{rr}
2 & 0 \\
-1 & 1 \\
0 & 2
\end{array}\right) \quad b=\left(\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right)
$$

First: Compute new matrix and vector

$$
A^{T} A=\left(\begin{array}{rrr}
2 & -1 & 0 \\
0 & 1 & 2
\end{array}\right)\left(\begin{array}{rr}
2 & 0 \\
-1 & 1 \\
0 & 2
\end{array}\right)=\left(\begin{array}{rr}
5 & -1 \\
-1 & 5
\end{array}\right)
$$

and

$$
A^{T} b=\left(\begin{array}{rrr}
2 & -1 & 0 \\
0 & 1 & 2
\end{array}\right)\left(\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right)=\binom{2}{-2} .
$$

Second: Solve the new system; row reduce:

$$
\left(\begin{array}{rr|r}
5 & -1 & 2 \\
-1 & 5 & -2
\end{array}\right) \text { ans }\left(\begin{array}{rr|r}
1 & 0 & 1 / 3 \\
0 & 1 & -1 / 3
\end{array}\right) .
$$

So the unique least squares solution is $\widehat{x}=\binom{1 / 3}{-1 / 3}$.

Data Modeling: Best fit line

What does it minimize?
Best fit line minimizes the sum of the squares of the vertical distances from the data points to the line.

Data modeling: best fit parabola

What least squares problem $A x=b$ finds the best parabola through the points $(-1,0.5),(1,-1),(2,-0.5),(3,2)$?
The general equation for a parabola is

$$
a x^{2}+b x+c=y
$$

So we want to solve:

$$
\begin{array}{r}
a(-1)^{2}+b(-1)+c=0.5 \\
a(1)^{2}+b(1)+c=-1 \\
a(2)^{2}+b(2)+c=-0.5 \\
a(3)^{2}+b(3)+c=2
\end{array}
$$

In matrix form:

$$
\left(\begin{array}{rrr}
1 & -1 & 1 \\
1 & 1 & 1 \\
4 & 2 & 1 \\
9 & 3 & 1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{r}
0.5 \\
-1 \\
-0.5 \\
2
\end{array}\right)
$$

Answer: $\widehat{a}=\frac{53}{88}, \widehat{b}=\frac{379}{440}, \widehat{c}=\frac{82}{88}$ so best fit is: $53 x^{2}-\frac{379}{5} x-82=88 y$

Data modeling: best fit parabola

Picture

Multiple regression

Expert's notation

The model to fit:

$$
\begin{gathered}
y_{1}=\beta_{0}+\beta_{1} u_{1}+\beta_{2} v_{1}+\epsilon_{1} \\
y_{2}=\beta_{0}+\beta_{1} u_{2}+\beta_{2} v_{2}+\epsilon_{2} \\
\vdots \\
\vdots \\
y_{n}=\beta_{0}+\beta_{1} u_{n}+\beta_{2} v_{n}+\epsilon_{n}
\end{gathered}
$$

The equation display $y=X \beta+\varepsilon$:

$$
\left.\begin{array}{c}
\begin{array}{c}
\text { Observation } \\
\text { vector }
\end{array} \mathbf{y}=\left[\begin{array}{c}
\text { Design } \\
\text { matrix }
\end{array}\right. \\
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right], \quad X=\left[\begin{array}{ccc}
1 & u_{1} & v_{1} \\
1 & u_{2} & v_{2} \\
\vdots & \vdots & \vdots \\
1 & u_{n} & v_{n}
\end{array}\right], \quad \boldsymbol{\beta}=\left[\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\beta_{2}
\end{array}\right], \quad \boldsymbol{\epsilon}=\left[\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\vdots \\
\epsilon_{n}
\end{array}\right]
$$

The error
We want to minimize the length of ε.
In last section we don't write it as part of the equation.

Symmetric matrices

Definition

An $n \times n$ matrix is symmetric if $A=A^{T}$.

Theorem

An $n \times n$ matrix A is orthogonally diagonalizable if and only if A is symmetric.

The easy observation: Let $A=P D P^{T}$ with D diagonal and P orthonormal.
Just check A is symmetric, that is $A=A^{T}$:

$$
(\underbrace{P D P^{T}}_{A})=\left(P^{T}\right)^{T} D^{T} P^{T}=\underbrace{P D P^{T}}_{A}
$$

The difficult part (omitted here) is: if $A=A^{T}$ then an orthogonal diagonalization do exists.

Summary

Spectral Theorem for Symmetric matrices
An $n \times n$ symmetric matrix A has the following properties.

- A has n real eigenvalues, counting multiplicities
- For each eigenvalue, the dimension of the λ-eigenspaces equal the algebraic multiplicity.
- The eigenspaces are mutually orthogona!! eigenvectors corresponding to different eigenvalues are orthogonal.
- A is orthogonally diagonalizable.

Example: Orthogonally diagonalizable

Example

Orthogonally diagonalize the matrix $A=\left(\begin{array}{ccc}3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3\end{array}\right)$
its charactheristic equation is $-(\lambda-7)^{2}(\lambda+2)=0$.
Find a basis for each λ-eigenspace:

$$
\text { For } \lambda=7:\left\{\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{c}
-1 / 2 \\
1 \\
0
\end{array}\right)\right\} \quad \text { For } \lambda=-2:\left\{\left(\begin{array}{c}
-1 \\
-1 / 2 \\
1
\end{array}\right)\right\}
$$

A suitable P
Is the set of eigenvectors above already orthogonal? orthonormal?

$$
A=P\left(\begin{array}{ccc}
7 & 0 & 0 \\
0 & 7 & 0 \\
0 & 0 & -2
\end{array}\right) P^{-1}
$$

Example: Orthogonally diagonalizable

Verify:

- $v_{3}=\left(\begin{array}{c}-1 \\ -1 / 2 \\ 1\end{array}\right)$ is already orthogonal to $v_{1}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$ and $v_{2}=\left(\begin{array}{c}-1 / 2 \\ 1 \\ 0\end{array}\right)$
- but $v_{1} \cdot v_{2} \neq 0$.

Tackle this: Use Gram-Schmidt

$$
\begin{aligned}
& u_{1}=v_{1} \\
& u_{2}=v_{2}-\frac{v_{2} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}=\left(\begin{array}{c}
-1 / 2 \\
1 \\
0
\end{array}\right)-\frac{-1 / 2}{2}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
-1 / 4 \\
1 \\
1 / 4
\end{array}\right)
\end{aligned}
$$

And $u_{3}=v_{3}$. Then normalize!

$$
P=\left(\begin{array}{ccc}
1 / \sqrt{2} & -1 \sqrt{18} & -2 / 3 \\
0 & 4 \sqrt{18} & -1 / 3 \\
1 / \sqrt{2} & 1 \sqrt{18} & 2 / 3
\end{array}\right), \quad D=\left(\begin{array}{ccc}
7 & 0 & 0 \\
0 & 7 & 0 \\
0 & 0 & -2
\end{array}\right)
$$

Example: Spectral Decomposition

Example

Construct a spectral decomposition of the matrix A with orthogonal diagonalization

$$
A=\left(\begin{array}{ll}
7 & 2 \\
2 & 4
\end{array}\right)=\left(\begin{array}{cc}
2 / \sqrt{5} & -1 / \sqrt{5} \\
1 / \sqrt{5} & 2 / \sqrt{5}
\end{array}\right)\left(\begin{array}{cc}
8 & 0 \\
0 & 3
\end{array}\right)\left(\begin{array}{cc}
2 / \sqrt{5} & 1 / \sqrt{5} \\
-1 / \sqrt{5} & 2 / \sqrt{5}
\end{array}\right)
$$

Solution: Then $A=8 u_{1} u_{1}^{T}+3 u_{2} u_{2}^{T}$, each matrix is

$$
\begin{aligned}
u_{1} u_{1}^{T} & =\left(\begin{array}{cc}
4 / 5 & 2 / 5 \\
2 / 5 & 1 / 5
\end{array}\right) \\
u_{2} u_{2}^{T} & =\left(\begin{array}{cc}
1 / 5 & -2 / 5 \\
-2 / 5 & 4 / 5
\end{array}\right)
\end{aligned}
$$

Check: $8 u_{1} u_{1}^{T}+3 u_{2} u_{2}^{T}=\left(\begin{array}{cc}32 / 5 & 16 / 5 \\ 16 / 5 & 8 / 5\end{array}\right)+\left(\begin{array}{cc}3 / 5 & -6 / 5 \\ -6 / 5 & 12 / 5\end{array}\right)=A$

Back to change of variables

A consequence of the spectral theorem for symmetric matrices

The principal axes theorem
Let A be $n \times n$ symmetric matrix.
Then there is an orthogonal change of variable $x=P y$ that transforms the quadratic form $x^{\top} A x$ into a quadratic form y^{\top} Dy with no cross-product terms.

If $A=P D P^{-1}$ with $P^{T}=P^{-1}$ and D diagonal, then

$$
x^{\top} A x=\underbrace{x^{\top} P}_{y^{\top} D} D \underbrace{P^{-1} x}_{y}
$$

FIGURE 1 Change of variable in $\mathbf{x}^{T} A \mathbf{x}$.

Change of variables

Example

Make a change of variables that transforms the quadratic form

$$
Q\left(x_{1}, x_{2}\right)=x_{1}^{2}-5 x_{2}^{2}-8 x_{1} x_{2}
$$

into a quadratic form with no cross-product terms

General Formula: there is an orthonormal matrix P such that

$$
A=P\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right) P^{T}
$$

the change of variables is given by $y=P^{\top} x=P^{-1} x$.
In this case, First $A=\left(\begin{array}{cc}1 & -4 \\ -4 & 5\end{array}\right), \lambda_{1}=3, \lambda_{2}=-7$ and $P=\frac{1}{\sqrt{5}}\left(\begin{array}{cc}2 & 1 \\ -1 & 2\end{array}\right)$
Then

$$
y^{T}\left(\begin{array}{cc}
3 & 0 \\
0 & -7
\end{array}\right) y=3 y_{1}^{2}-7 y_{2}^{2}
$$

Classify quadratic forms

A quadratic form is

- Indefinite: if $Q(x)$ assumes both positive and negative values
- Positive definite: if $Q(x)>0$ for all $x \neq 0$,
- Negative definite: if $Q(x)<0$ for all $x \neq 0$,
The prefix semi means e.g. $Q(x) \geq 0$ for all $x \neq 0$.

Eigenvalues

You can classify quadratic from knowing its eigenvalues (evaluate on principal axes)
e.g. Positive definite forms have all eigenvalues positive.

Positive definite

Negative definite

Indefinite

