

MATH 1554 READING DAY STUDY SESSION WORKSHEET

PROBLEMS

- 1. A 5×4 matrix $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \vec{a_3} & \vec{a_4} \end{bmatrix}$ has all non-zero columns, and $\vec{a_4} = 2\vec{a_1} + 3\vec{a_2} + 5\vec{a_3}$. Find a non-trivial solution to $A\vec{x} = \vec{0}$.
- 2. For what values of h, if any, are the columns of A linearly dependent? $A = \begin{bmatrix} 1 & 0 & h \\ 0 & 1 & 1 \\ h & 1 & 0 \end{bmatrix}$
- 3. For what values of h is \vec{b} in the plane spanned by $\vec{a_1}$ and $\vec{a_2}$?

$$\vec{a_1} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \quad \vec{a_2} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \quad \vec{b} = \begin{bmatrix} -1\\1\\h \end{bmatrix}$$

- 4. Express the solution to $A\vec{x} = \vec{0}$ in parametric vector form, where $A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 0 & 0 & 1 & 2 \end{bmatrix}$ 5. Write down the standard matrix A of $T : \mathbb{R}^2 \to \mathbb{R}^2$ with $T(\vec{x}) = -\vec{x}$.
- 6. Find the domain and codomain of the linear transformation T given by the standard matrix

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 1 \\ 5 & 7 & 3 \\ 2 & 5 & -1 \end{bmatrix}$$

Is this linear transformation one-to-one? Is it onto?

- 7. Let $A = \begin{vmatrix} -5 & 2 \\ -1 & -3 \end{vmatrix}$. Find its eigenvalue(s) and find an invertible matrix P and a (rotation-scaling) matrix C such that $A = PCP^{-1}$.
- 8. W is the set of all vectors of the form $\begin{bmatrix} x \\ x+y \\ y \end{bmatrix}$. With of the following vectors are in W^{\perp} ? $\begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix} \begin{bmatrix} -1\\ 1\\ 1 \end{bmatrix} \begin{bmatrix} 1\\ 1\\ -1 \end{bmatrix}$
- 9. Identify all values of a, b, and c, if any, so that the columns of U are mutually orthogonal.

$$U = \begin{bmatrix} 3 & 2 & 2 \\ -4 & 1 & b \\ 2 & a & c \end{bmatrix}$$

- 10. Use the Gram-Schmidt process to construct an orthonormal basis of the column space of A.
- 11. Let A = QR, where $A = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ -2 & -2 \end{bmatrix}$, $Q = \frac{1}{3} \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ -2 & 2 \end{bmatrix}$ Compute the upper triangular matrix R.
- 12. Give an example of a 2×2 matrix that is in echelon form, is orthogonally diagonalizable, but is not invertible.

MATH 1554 - Spring 2018

- 13. True or False?
 - (i) If the set of vectors $\{\vec{u}, \vec{v}, \vec{w}\}$ is linearly in- (xvi) An $n \times n$ matrix with n distinct eigenvalues is dependent, so is every pair of vectors $\{\vec{u}, \vec{v}\}$. $\{\vec{u}, \vec{w}\}, \text{ and } \{\vec{v}, \vec{w}\}.$
 - (ii) If every pair of vectors $\{\vec{u}, \vec{v}\}, \{\vec{u}, \vec{w}\},$ and vectors $\{\vec{u}, \vec{v}, \vec{w}\}$.
 - (iii) For any two vectors \vec{u} and \vec{v} , we have (xix) For any three vectors \vec{x} , \vec{y} , and \vec{z} we have $Span\{\vec{u}, \vec{v}\} = Span\{\vec{u}, 2\vec{u} + 3\vec{v}, 4\vec{v}\}.$
 - (iv) If \vec{u} and \vec{v} are two distinct nonzero vectors, then there are exactly to vectors in $Span\{\vec{u}, \vec{v}\}.$

(v) The transformation given by
$$T\left(\begin{bmatrix} x_1\\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1x_2\\ x_2 \end{bmatrix}$$
 is linear.

(vi) Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a projection onto the x_1 -axis. The range of T is \mathbb{R}^2 .

(vii) The transformation given by
$$T\left(\begin{bmatrix} x_1\\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1+1\\ x_2 \end{bmatrix}$$
 is linear.

- (viii) A linear map $T: \mathbb{R}^2 \to \mathbb{R}^3$ can be onto.
- (ix) The composition $S \circ T$ of two one-to-one linear maps is one-to-one.
- \mathbb{R}^3 may be a line.
- same as the eigenvalues of its reduced row echelon form.
- the same eigenvalue λ , then every linear combination of $a\vec{u} + b\vec{v}$ with $a, b \in \mathbb{R}$ (except the zero vector) is an eigenvector.
- (xiii) The geometric multiplicity of an eigenvalue is less than or equal to the algebraic multiplicity.
- (xiv) All upper triangular 3×3 stochastic matrices are not regular.
- (xv) If A is a diagonalizable matrix, then $\lambda = 0$ is not an eigenvalue of A.

- diagonalizable.
- (xvii) If complex λ is an eigenvalue, then so is $-\lambda$.
- $\{\vec{v}, \vec{w}\}$ is linearly independent, so is the set of (xviii) Every real 3×3 matrix must have a real eigenvalue.
 - $(\vec{x} \cdot \vec{y})\vec{z} = (\vec{y} \cdot \vec{z})\vec{x}.$
 - (xx) Let $\vec{x} \cdot \vec{y} > 0$. Then the angle between \vec{x} and \vec{y} is less than 90°.
 - (xxi) Every orthogonal set of nonzero vectors $\{\vec{x}, \vec{y}, \vec{z}\}$ is linearly independent.
 - (xxii) Let \hat{y} be the orthogonal projection of a vector \vec{y} onto the subspace $W \subset \mathbb{R}^n$. Then the transformation $T(\vec{y}) = \hat{y}$ is linear.
 - (xxiii) The inverse of an orthogonal matrix Q equals Q^T .
 - (xxiv) A least square solution \hat{x} to $A\vec{x} = \vec{b}$ always satisfies $A\vec{x} = \vec{b}$.
 - (xxv) A least square solution \hat{x} to $A\vec{x} = \vec{b}$ minimizes the distance $||A\vec{x} - \vec{b}||$. That is, the distance is the shortest for $\vec{x} = \hat{x}$.
- (x) The range of a one-to-one linear map $T : \mathbb{R}^2 \to (xxvi)$ A $n \times n$ symmetric matrix A will always have n real and distinct eigenvalues.
- (xi) The eigenvalues of a square matrix A are the (xxvii) A $n \times n$ symmetric matrix A will have algeeach of its eigenvalues.
- (xii) If \vec{u} and \vec{v} are eigenvectors corresponding to (xxviii) If a matrix A is orthogonally diagonalizable, then A^k is also orthogonally diagonalizable for all $k \in \mathbb{Z}^+$.
 - (xxix) The eigenvalues of $A^T A$ are always real for any $m \times n$ matrix A.
 - (xxx) A negative definite matrix cannot be invertible
 - (xxxi) Matrices A and A^T have the same non-zero singular values.
 - (xxxii) For any matrix A, $A^{t}A$ has non-negative, real eigenvalues. $\mathbf{2}$

success.gatech.edu/reading-day