MATH 1554 READING DAY STUDY SESSION WORKSHEET

Problems

1. A 5×4 matrix $A=\left[\begin{array}{cccc}\overrightarrow{a_{1}} & \overrightarrow{a_{2}} & \overrightarrow{a_{3}} & \overrightarrow{a_{4}}\end{array}\right]$ has all non-zero columns, and $\overrightarrow{a_{4}}=2 \overrightarrow{a_{1}}+3 \overrightarrow{a_{2}}+5 \overrightarrow{a_{3}}$. Find a non-trivial solution to $A \vec{x}=\overrightarrow{0}$.
2. For what values of h, if any, are the columns of A linearly dependent? $A=\left[\begin{array}{lll}1 & 0 & h \\ 0 & 1 & 1 \\ h & 1 & 0\end{array}\right]$
3. For what values of h is \vec{b} in the plane spanned by $\overrightarrow{a_{1}}$ and $\overrightarrow{a_{2}}$?

$$
\overrightarrow{a_{1}}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \quad \overrightarrow{a_{2}}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \quad \vec{b}=\left[\begin{array}{c}
-1 \\
1 \\
h
\end{array}\right]
$$

4. Express the solution to $A \vec{x}=\overrightarrow{0}$ in parametric vector form, where $A=\left[\begin{array}{llll}1 & 3 & 5 & 7 \\ 0 & 0 & 1 & 2\end{array}\right]$
5. Write down the standard matrix A of $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ with $T(\vec{x})=-\vec{x}$.
6. Find the domain and codomain of the linear transformation T given by the standard matrix

$$
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & 3 & 1 \\
5 & 7 & 3 \\
2 & 5 & -1
\end{array}\right]
$$

Is this linear transformation one-to-one? Is it onto?
7. Let $A=\left[\begin{array}{cc}-5 & 2 \\ -1 & -3\end{array}\right]$. Find its eigenvalue(s) and find an invertible matrix P and a (rotation-scaling) matrix C such that $A=P C P^{-1}$.
8. W is the set of all vectors of the form $\left[\begin{array}{c}x \\ x+y \\ y\end{array}\right]$. With of the following vectors are in W^{\perp} ?

$$
\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right] \quad\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right] \quad\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right]
$$

9. Identify all values of a, b, and c, if any, so that the columns of U are mutually orthogonal.

$$
U=\left[\begin{array}{ccc}
3 & 2 & 2 \\
-4 & 1 & b \\
2 & a & c
\end{array}\right]
$$

10. Use the Gram-Schmidt process to construct an orthonormal basis of the column space of A.
11. Let $A=Q R$, where $A=\left[\begin{array}{cc}1 & 4 \\ 2 & 5 \\ -2 & -2\end{array}\right], Q=\frac{1}{3}\left[\begin{array}{cc}1 & 2 \\ 2 & 1 \\ -2 & 2\end{array}\right]$ Compute the upper triangular matrix R.
12. Give an example of a 2×2 matrix that is in echelon form, is orthogonally diagonalizable, but is not invertible.

13. True or False?

(i) If the set of vectors $\{\vec{u}, \vec{v}, \vec{w}\}$ is linearly independent, so is every pair of vectors $\{\vec{u}, \vec{v}\}$, $\{\vec{u}, \vec{w}\}$, and $\{\vec{v}, \vec{w}\}$.
(ii) If every pair of vectors $\{\vec{u}, \vec{v}\},\{\vec{u}, \vec{w}\}$, and $\{\vec{v}, \vec{w}\}$ is linearly independent, so is the set of (xviii) Every real 3×3 matrix must have a real eigenvectors $\{\vec{u}, \vec{v}, \vec{w}\}$. value.
(iii) For any two vectors \vec{u} and \vec{v}, we have (xix) For any three vectors \vec{x}, \vec{y}, and \vec{z} we have $\operatorname{Span}\{\vec{u}, \vec{v}\}=\operatorname{Span}\{\vec{u}, 2 \vec{u}+3 \vec{v}, 4 \vec{v}\}$.
$(\vec{x} \cdot \vec{y}) \vec{z}=(\vec{y} \cdot \vec{z}) \vec{x}$.
(iv) If \vec{u} and \vec{v} are two distinct nonzero vectors, then there are exactly to vectors in $\operatorname{Span}\{\vec{u}, \vec{v}\}$.
(v) The transformation given by $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=$ $\left[\begin{array}{c}x_{1} x_{2} \\ x_{2}\end{array}\right]$ is linear.
(vi) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a projection onto the x_{1}-axis. The range of T is \mathbb{R}^{2}.
(vii) The transformation given by $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=$ $\left[\begin{array}{c}x_{1}+1 \\ x_{2}\end{array}\right]$ is linear.
(viii) A linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ can be onto.
(ix) The composition $S \circ T$ of two one-to-one linear maps is one-to-one.
(x) The range of a one-to-one linear map $T: \mathbb{R}^{2} \rightarrow$ (xxvi) A $n \times n$ symmetric matrix A will always have \mathbb{R}^{3} may be a line.
(xi) The eigenvalues of a square matrix A are the ${ }^{(x x i}$ same as the eigenvalues of its reduced row echelon form.
(xii) If \vec{u} and \vec{v} are eigenvectors corresponding to (x the same eigenvalue λ, then every linear combination of $a \vec{u}+b \vec{v}$ with $a, b \in \mathbb{R}$ (except the zero vector) is an eigenvector.
(xiii) The geometric multiplicity of an eigenvalue is less than or equal to the algebraic multiplicity.
(xiv) All upper triangular 3×3 stochastic matrices are not regular.
(xv) If A is a diagonalizable matrix, then $\lambda=0$ is not an eigenvalue of A.
success.gatech.edu/reading-day
(xxxii) For any matrix $A, A^{t} A$ has non-negative, real eigenvalues.

