Chapter 1

Linear Equations

Introduction

What is \mathbb{R}^n ?

Line, Plane, Space, ...

Recall that **R** denotes the collection of all real numbers, i.e. the number line. It contains numbers like $0, -1, \pi, \frac{3}{2}, \ldots$

Definition

Let n be a positive whole number. We define

 \mathbf{R}^n = all ordered *n*-tuples of real numbers $(x_1, x_2, x_3, \ldots, x_n)$.

Example

When n = 1, we just get **R** back: $\mathbf{R}^1 = \mathbf{R}$. Geometrically, this is the *number line*.

$$\xrightarrow{-3 \quad -2 \quad -1 \quad 0 \quad 1 \quad 2 \quad 3}$$

Line, Plane, Space, ...

Example

When n = 2, we can think of \mathbb{R}^2 as the *plane*. This is because every point on the plane can be represented by an ordered pair of real numbers, namely, its x-and y-coordinates.

We can use the elements of \mathbb{R}^2 to *label* points on the plane, but \mathbb{R}^2 is not defined to be the plane!

Line, Plane, Space, ...

Example

When n = 3, we can think of \mathbb{R}^3 as the *space* we (appear to) live in. This is because every point in space can be represented by an ordered triple of real numbers, namely, its *x*-, *y*-, and *z*-coordinates.

Again, we can use the elements of \mathbb{R}^3 to *label* points in space, but \mathbb{R}^3 is not defined to be space!

Line, Plane, Space, ... Continued

Example

All colors you can see can be described by three quantities: the amount of red, green, and blue light in that color. So we could also think of \mathbb{R}^3 as the space of all *colors*:

 $\mathbf{R}^3 =$ all colors (r, g, b).

Again, we can use the elements of \mathbf{R}^3 to *label* the colors, but \mathbf{R}^3 is not defined to be the space of all colors!

So what is \mathbf{R}^4 ? or \mathbf{R}^5 ? or \mathbf{R}^n ?

... go back to the *definition*: ordered *n*-tuples of real numbers

 $(x_1, x_2, x_3, \ldots, x_n).$

They're still "geometric" spaces, in the sense that our intuition for \mathbb{R}^2 and \mathbb{R}^3 sometimes extends to \mathbb{R}^n , but they're harder to visualize.

 \longrightarrow Last time we could have used \mathbf{R}^4 to label the number of molecules involved in the combustion reaction.

$$\underline{x} C_2H_6 + \underline{y} O_2 \rightarrow \underline{z} CO_2 + \underline{w} H_2O$$

We'll make definitions and state theorems that apply to any \mathbb{R}^n , but we'll only draw pictures for \mathbb{R}^2 and \mathbb{R}^3 .