Chapter 1

Linear Equations

Introduction

What is \mathbb{R}^{n} ?

Line, Plane, Space, ...

Recall that \mathbf{R} denotes the collection of all real numbers, i.e. the number line. It contains numbers like $0,-1, \pi, \frac{3}{2}, \ldots$.
Definition
Let n be a positive whole number. We define

$$
\mathbf{R}^{n}=\text { all ordered } n \text {-tuples of real numbers }\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right) .
$$

Example
When $n=1$, we just get \mathbf{R} back: $\mathbf{R}^{1}=\mathbf{R}$. Geometrically, this is the number line.

Line, Plane, Space, ...

Continued

Example

When $n=2$, we can think of \mathbf{R}^{2} as the plane. This is because every point on the plane can be represented by an ordered pair of real numbers, namely, its x and y-coordinates.

We can use the elements of \mathbf{R}^{2} to label points on the plane, but \mathbf{R}^{2} is not defined to be the plane!

Line, Plane, Space, ...

Continued

Example

When $n=3$, we can think of \mathbf{R}^{3} as the space we (appear to) live in. This is because every point in space can be represented by an ordered triple of real numbers, namely, its x-, y-, and z-coordinates.

Again, we can use the elements of \mathbf{R}^{3} to label points in space, but \mathbf{R}^{3} is not defined to be space!

Line, Plane, Space, ...

Continued

Example

All colors you can see can be described by three quantities: the amount of red, green, and blue light in that color. So we could also think of \mathbf{R}^{3} as the space of all colors:

$$
\mathbf{R}^{3}=\text { all colors }(r, g, b) .
$$

Again, we can use the elements of \mathbf{R}^{3} to label the colors, but \mathbf{R}^{3} is not defined to be the space of all colors!

Line, Plane, Space, ...

Continued
So what is \mathbf{R}^{4} ? or \mathbf{R}^{5} ? or \mathbf{R}^{n} ?
...go back to the definition: ordered n-tuples of real numbers

$$
\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right) .
$$

They're still "geometric" spaces, in the sense that our intuition for \mathbf{R}^{2} and \mathbf{R}^{3} sometimes extends to \mathbf{R}^{n}, but they're harder to visualize.
$m \sim>$ Last time we could have used \mathbf{R}^{4} to label the number of molecules involved in the combustion reaction.

$$
\underline{x} \mathrm{C}_{2} \mathrm{H}_{6}+\underline{y} \mathrm{O}_{2} \rightarrow \underline{z} \mathrm{CO}_{2}+\underline{w} \mathrm{H}_{2} \mathrm{O}
$$

We'll make definitions and state theorems that apply to any R^{n}, but we'll only draw pictures for \mathbf{R}^{2} and \mathbf{R}^{3}.

