MATH 2802
 MIDTERM EXAMINATION 2

| Name | Section | |
| :--- | :--- | :--- | :--- |

Please read all instructions carefully before beginning.

- There are 6 problems in the exam and the maximum score on this exam is 50 points.
- You have 50 minutes to complete this exam.
- There are no aids of any kind (notes, text, etc.) allowed.
- Please show your work.
- You may cite any theorem proved in class or in the sections we covered in the text.
- You may use the last page as scratch paper
- Good luck!

1. [2 points each] Circle \mathbf{T} if the statement is always true and circle \mathbf{F} if it is ever false. The matrices here are $n \times n$.
a) $\mathbf{T} \quad \mathbf{F}$ If the geometric multiplicities of eigenvalues in A sum up to n, then A is diagonalizable.
b) $\quad \mathbf{T} \quad \mathbf{F} \quad$ A vector $v=\left(v_{1}, \ldots, v_{n}\right)$ is steady-state vector of a stochastic matrix A if $A v=v$ and the length $|v|=\sqrt{v_{1}^{2}+\ldots+v_{n}^{2}}=1$.
c) $\quad \mathbf{T} \quad \mathbf{F} \quad$ If P is invertible, then $\operatorname{det}\left(P D P^{-1}\right)=\operatorname{det}(D)$.
d) $\quad \mathbf{T} \quad \mathbf{F}$ Then dimension of the column space of A is called $\operatorname{rank}(A)$.
e) $\mathbf{T} \quad \mathbf{F}$ The determinant of an invertible matrix is always positive.
f) $\quad \mathbf{T} \quad \mathbf{F} \quad A$ and $B=2 A$ are $n \times n$ matrices. If $\operatorname{det}(A)=4$, then $\operatorname{det}(B)=8$.

Solution.

a) True: This means there will exists a basis of \mathbf{R}^{n} consisting of eigenvectors of A.
b) False: The entries of v should sum to one and be non-negative.
c) True: The determinant of a product equals the product of the determinants of the matrices involved. In addition, $\operatorname{det}\left(P^{-1}\right)=\operatorname{det}(P)^{-1}$.
d) True: this is the definition.
e) False: It is non-zero, but the determinant might be negative.
f) False: Matrix B is obtained by scaling each row of A by two. Therefore, the determinant doubles at each of these scalings: $\operatorname{det}(B)=2^{n} \operatorname{det}(A)=4 \cdot 2^{n}$.
2. [10 points]

Consider the decomposition of $A=P D P^{-1}$ with

$$
P=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad D=\left(\begin{array}{cc}
1 & 0 \\
0 & 1 / 3
\end{array}\right)
$$

a) Draw both the 1 -eigenspace and the $1 / 3$-eigenspace of A.
b) Provide an eigenvector of A with eigenvalue 1 .
c) Evaluate $A^{100}\binom{1}{0}$.
d) Write a formula for D^{n}.

Solution.

a) $[4 \mathrm{pts}]$ Sketch both the 1 -eigenspace and the $1 / 3$-eigenspace of A.
b) [2pts] Vector corresponding to first column of P, or any scalar multiple of it.
c) [2pts] Since $\binom{1}{0}$ is an eigenvector with eigenvalue 1 , no matter how many times we multiply by A, the result is always $\binom{1}{0}$. That is

$$
A^{100}\binom{1}{0}=A^{99}\binom{1}{0}=\ldots=A\binom{1}{0}=\binom{1}{0} .
$$

d) $[2 \mathrm{pts}] D^{n}=\left(\begin{array}{cc}1 & 0 \\ 0 & 3^{-n}\end{array}\right)$.
3. [8 points] In this problem, show your work and justify your answers.
a) Is 5 an eigenvalue of $A=\left(\begin{array}{cc}-2 & 7 \\ -5 & 10\end{array}\right)$?
b) Is $v=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ an eigenvector of $B=\left(\begin{array}{ccc}7 & 6 & -1 \\ 0 & 4 & 8 \\ 3 & -8 & 17\end{array}\right)$?
c) Find the 3-eigenspace of $C=\left(\begin{array}{cccc}4 & -7 & 0 & 2 \\ 0 & 3 & -4 & 6 \\ 0 & 0 & 3 & -8 \\ 0 & 0 & 0 & 1\end{array}\right)$
d) Is C diagonalizable?

Solution.

a) [2 points] We compute $\operatorname{det}(A-\lambda I)=(-2-\lambda)(10-\lambda)+35=\lambda^{2}-8 \lambda+15$. We can see that $\lambda=5$ is a root of this polynomial, thus 5 is, indeed, an eigenvalue of A.
b) [1 points] By computing $B v=\left(\begin{array}{l}12 \\ 12 \\ 12\end{array}\right)$ we can see that v is eigenvector of B with eigenvalue 12.
c) [3 points] We have to find the null space of $C-3 I$. That is, find the parametric vector form of solutions to $(C-3 I) x=0$.

$$
C-3 I=\left(\begin{array}{cccc}
1 & -7 & 0 & 2 \\
0 & 0 & -4 & 6 \\
0 & 0 & 0 & -8 \\
0 & 0 & 0 & -2
\end{array}\right) \sim\left(\begin{array}{cccc}
1 & -7 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

The system translates to $x_{1}=7 x_{2}$ and $x_{3}=x_{4}=0$. In other words, solutions have the form

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=x_{2}\left(\begin{array}{l}
7 \\
1 \\
0 \\
0
\end{array}\right)
$$

and the 3-eigenspace is Span $\left\{\left(\begin{array}{l}7 \\ 1 \\ 0 \\ 0\end{array}\right)\right\}$.
d) [2 points] The matrix is not diagonalizable because the algebraic multiplicity of 3 is strictly larger than its geometric multiplicity.
4. [10 points] Consider a matrix A which is row-equivalent to:

$$
A=\left(\begin{array}{ccccc}
1 & 4 & 8 & -3 & -7 \\
-1 & 2 & 7 & 3 & 4 \\
-2 & 2 & 9 & 5 & 5 \\
3 & 6 & 9 & -5 & -2
\end{array}\right) \sim\left(\begin{array}{ccccc}
1 & 4 & 8 & 0 & 5 \\
0 & 2 & 5 & 0 & -1 \\
0 & 0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

a) Find a basis for $\operatorname{Col}(A)$
b) What is the dimension for $\operatorname{Nul}(A)$?
c) Justify your answer in b) (There are several possible correct answers)
d) The \qquad theorem states that if the dimension of V is m then:

- Any m linearly independent vectors in V form \qquad for V.
- Any m vectors that \qquad form \qquad for V .

Solution.

a) [3pts] A basis is found by colecting the columns in A corresponding to the pivot columns in its row-reduction:

$$
\left\{\left(\begin{array}{c}
1 \\
-1 \\
-2 \\
3
\end{array}\right),\left(\begin{array}{l}
4 \\
2 \\
2 \\
6
\end{array}\right),\left(\begin{array}{c}
-3 \\
3 \\
5 \\
-5
\end{array}\right)\right\}
$$

b) $[1 \mathrm{pt}] \operatorname{Dimension~of~} \operatorname{Nul}(A)$ is 2 .
c) [1pt] Since A has 5 columns and the dimension of $\operatorname{Col}(A)$ is 3, by the Rank theorem, the dimension of $\operatorname{Nul}(A)=5-3=2$. Alternatively, we can see that A has two nonpivot columns, so the basis of $\operatorname{Nul}(A)$ will consist of two vectors.
d) [3pts] If the dimension of V is m then:

- Any m linearly independent vectors in V form a basis for V .
- Any m vectors that span V form a basis for V .

5. [5pts]

There is a car rental with locations at the airport, Midtown and Marietta. After a comprehensive study the administration knows that:

- A car rented at the airport has 20% chance of being returned to the Midtown location and 10% chance of being returned to the Marietta location.
- A car rented at the Midtown location has 10% chance of being returned to the airport and 10% chance of being returned to the Marietta location.
- A car rented at the Marietta location has 30\% chance of being returned to the airport and 30% chance of being returned to the Midtown location.
a) Find the transition matrix Q (make transitions from airport, midtown and Marietta correspond to columns 1,2 and 3 respectively).
b) If the steady-state vector of Q is $w=\frac{1}{28}\left(\begin{array}{c}9 \\ 15 \\ 4\end{array}\right)$. What percentage of time will a car in the rental be returned to the Midtown location?

Solution.

a) $[3$ points $] Q=\left(\begin{array}{lll}.7 & .1 & .3 \\ .2 & .8 & .3 \\ .1 & .1 & .4\end{array}\right)$
b) [2 points] The percentage corresponds to the second entry: fraction is $\frac{15}{28} \sim 54 \%$
6. [7 points] An economy of coal and electric sectors has production matrix $C=\left(\begin{array}{cc}0 & .5 \\ .6 & .2\end{array}\right)$ and a demand of $d=\binom{50}{30}$ is requested. Use Leontief's inverse matrix to determine the production level x necessary to satisfy the demand d.

Hint: remember that $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$.

Solution.

[2pts] The inverse matrix is $A=(I-C)^{-1}$
[2pts] The production level is $x=(I-C)^{-1} d$
[2pts] Since $\operatorname{det}(A)=.5$, the inverse is

$$
\begin{aligned}
& \left(\begin{array}{cc}
1 & -.5 \\
-.6 & .8
\end{array}\right)^{-1}=\frac{1}{\operatorname{det}(A)}\left(\begin{array}{ll}
.8 & .5 \\
.6 & 1
\end{array}\right)=\left(\begin{array}{ll}
1.6 & 1 \\
1.2 & 2
\end{array}\right) \\
& {[1 \mathrm{pt}] \text { Then } x=\left(\begin{array}{ll}
1.6 & 1 \\
1.2 & 2
\end{array}\right)\binom{50}{30}=\binom{110}{120} .}
\end{aligned}
$$

