MATH 2802
 MIDTERM EXAMINATION 3

| Name | Section | |
| :--- | :--- | :--- | :--- |

Please read all instructions carefully before beginning.

- There are 6 problems in the exam and the maximum score on this exam is 50 points.
- You have 50 minutes to complete this exam.
- There are no aids of any kind (notes, text, etc.) allowed.
- Please show your work.
- You may cite any theorem proved in class or in the sections we covered in the text.
- You may use the last page as scratch paper
- Good luck!

1. [2 points each] Circle \mathbf{T} if the statement is always true and circle \mathbf{F} if it is ever false. The matrices here are $n \times n$.
a) $\quad \mathbf{T} \quad \mathbf{F} \quad$ If z is orthogonal to both v and w, then z is in the orthogonal complement of $\operatorname{Span}\{v, w\}$.
b) $\quad \mathbf{T} \quad \mathbf{F}$ The orthogonal projection of y onto W depends on the basis selected for W.
c) $\mathbf{T} \quad \mathbf{F}$ If $\left\{v_{1}, v_{2}, v_{3}\right\}$ is an orthogonal basis of W then $\left\{v_{1}, v_{2}, 5 v_{3}\right\}$ is an orthogonal basis for W.
d) $\quad \mathbf{T} \quad \mathbf{F} \quad$ If P is orthonormal then $P^{-1}=P^{T}$
e) $\mathbf{T} \quad \mathbf{F}$ The quadratic form Q is positive definite if for all non-zero vectors $Q(x) \geq 0$.

Solution.

a) True: For any vector $c_{1} v+c_{2} w$ we have $z \cdot\left(c_{1} v+c_{2} w\right)=0$; that is, z is orthogonal to all vectors in $\operatorname{Span}\{v, w\}$.
b) False.
c) True. To verify this, compute the dot product between pairs in $\left\{v_{1}, v_{2}, 5 v_{3}\right\}$.
d) True.
e) False: The inequality should be strict; that is, $Q(x)>0$ for all non-zero vectors.
2. [6 points] Let $W=\operatorname{Span}\left\{v_{1}, v_{2}\right\}$ with $v_{1}=\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)$ and $v_{2}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$.

Find $y=\operatorname{proj}_{W}\left(\begin{array}{l}1 \\ 1 \\ 7\end{array}\right)$. Justify your answer.

Solution.

[2points] The justification: v_{1} is orthogonal to v_{2}; that is, $v_{1} \cdot v_{2}=(-1)(1)+0(1)+$ $(1)(1)=0$ so we can use formulas from class.
[2points] Thus, we use the next formula to find the projection of $x=\left(\begin{array}{l}1 \\ 1 \\ 7\end{array}\right)$ onto W :

$$
[2 \mathrm{pts}] \operatorname{proj}_{W}\left(\begin{array}{l}
1 \\
1 \\
7
\end{array}\right)=\frac{x \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}+\frac{x \cdot v_{2}}{v_{2} \cdot v_{2}} v_{2}=\frac{6}{2}\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)+\frac{9}{3}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
3 \\
6
\end{array}\right) .
$$

3. [6 points] Let $v_{1}=\left(\begin{array}{c}4 \\ -2 \\ 5\end{array}\right), v_{2}=\left(\begin{array}{c}-2 \\ 1 \\ 2\end{array}\right)$ and $v_{3}=\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)$.
a) Compute $v_{1} \cdot v_{2}, v_{2} \cdot v_{3}$ and $v_{1} \cdot v_{3}$ (Show your work).
b) Is $\left\{v_{1}, v_{2}, v_{3}\right\}$ a basis of \mathbf{R}^{3} ? Justify your answer.

Solution.

a) [4 points] $v_{1} \cdot v_{2}=v_{1} \cdot v_{3}=v_{2} \cdot v_{3}=0$
b) [2 points] We know that any set of orthogonal vectors is linearly independent; since there are three vectors, then the basis theorem guarantees they are a basis of \mathbf{R}^{3}.
4. [8pts]

Find the best approximation to $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ by vectors of the form $c_{1}\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)+c_{2}\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$. What is the error in your approximation?

Solution.

Let $W=\operatorname{Span}\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)\right\}$; this subspace is generated by orthogonal vectors (so we can use the formulas from class).
[4points] The best approximation to $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ is

$$
\operatorname{proj}_{W}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\frac{1}{1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+\frac{1}{1}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

[2points] which has the form $1\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)+1\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$.
[2points] The error in the approximation is the distance between $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ and $\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$:

$$
\left|\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)-\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\right|=\left|\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right|=1 .
$$

5. [10 points]

Apply the Gram-Schmidt procedure to the vectors $v_{1}=\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right), v_{2}=\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right)$ and $v_{3}=\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right)$ and give an orthonormal basis for $\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}\right\}$.

Solution.

The Gram-Schmidt procedure will give vectors w_{1}, w_{2}, w_{3} :
a) $[1$ points $] w_{1}=v_{1}$
b) [2points] $w_{2}=v_{2}-\operatorname{proj}_{w_{1}}\left(v_{2}\right) w_{1}=v_{2}-\frac{v_{2} \cdot w_{1}}{w_{1} \cdot w_{1}} w_{1}$
c) [1points]

$$
w_{2}=\left(\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right)-\frac{3}{4}\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{c}
-3 / 4 \\
1 / 4 \\
1 / 4 \\
1 / 4
\end{array}\right)
$$

d) $[2$ points $] w_{3}=v_{3}-\operatorname{proj}_{w_{1}}\left(v_{3}\right) w_{1}-\operatorname{proj}_{w_{2}}\left(v_{3}\right) w_{2}=v_{3}-\frac{v_{3} \cdot w_{1}}{w_{1} \cdot w_{1}} w_{1}-\frac{v_{3} \cdot w_{2}}{w_{2} \cdot w_{2}} w_{2}$
e) [1points]

$$
w_{3}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right)-\frac{2}{4}\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)-\frac{(2 / 4)}{(12 / 16)}\left(\begin{array}{c}
-3 / 4 \\
1 / 4 \\
1 / 4 \\
1 / 4
\end{array}\right)=\frac{1}{6}\left[\left(\begin{array}{l}
0 \\
0 \\
6 \\
6
\end{array}\right)-\left(\begin{array}{l}
3 \\
3 \\
3 \\
3
\end{array}\right)-\left(\begin{array}{c}
-3 \\
1 \\
1 \\
1
\end{array}\right)\right]=\frac{1}{3}\left(\begin{array}{c}
0 \\
-2 \\
1 \\
1
\end{array}\right)
$$

f) [3points] Now we divide each vector w_{1}, w_{2}, w_{3} by its length, to obtain a set of orthogonal vectors with unit length:

$$
\left\{\frac{1}{\sqrt{4}}\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right), \frac{1}{\sqrt{12}}\left(\begin{array}{c}
-3 \\
1 \\
1 \\
1
\end{array}\right), \frac{1}{\sqrt{6}}\left(\begin{array}{c}
0 \\
-2 \\
1 \\
1
\end{array}\right)\right\}
$$

6. [10 points] Let $Q\left(x_{1}, x_{2}\right)=3 x_{1}^{2}+2 x_{1} x_{2}+3 x_{2}^{2}$. There is a matrix P such that the change of variables $y=P^{-1} x$ gives the following form $Q(y)=a y_{1}^{2}+b y_{2}^{2}$.
a) Find the matrix associated to $Q(x)=x^{T} A x$
b) Find an orthogonal decomposition for $A=P D P^{T}$
c) Give the values of a and b
d) Is the quadratic form $Q(x)$ indefinite? Justify your answer.

Solution.

a) [1points] $A=\left(\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right)$
b) Find the orthogonal decomposition $A=P D P^{T}$:
[2points] Characteristic polynomial, factorized:

$$
\operatorname{det}(A-\lambda I)=(3-\lambda)^{2}-1=(\lambda-4)(\lambda-2)
$$

So eigenvalues of A are 4 and 2. Remains to find corresponding eigenvectors, and normalize them
[1 points] For $\lambda=4$, one eigenvector is $\binom{1}{1}$,
[1 points] For $\lambda=2$, one eigenvector is $\binom{1}{-1}$,
[3 points] Write down $P=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$ and $D=\left(\begin{array}{ll}4 & 0 \\ 0 & 2\end{array}\right)$.
c) [1 point] Values of $a=4$ and $b=2$
d) [1points] No. It is positive definite because all eigenvalues of A are positive.

