MATH 2802
 MIDTERM EXAMINATION 3

| Name | Section | |
| :--- | :--- | :--- | :--- |

Please read all instructions carefully before beginning.

- There are 6 problems in the exam and the maximum score on this exam is 50 points.
- You have 50 minutes to complete this exam.
- There are no aids of any kind (notes, text, etc.) allowed.
- Please show your work.
- You may cite any theorem proved in class or in the sections we covered in the text.
- You may use the last page as scratch paper
- Good luck!

1. [2 points each] Circle \mathbf{T} if the statement is always true and circle \mathbf{F} if it is ever false. The matrices here are $n \times n$.
a) $\quad \mathbf{T} \quad \mathbf{F} \quad$ If z is orthogonal to both v and w, then z is in the orthogonal complement of $\operatorname{Span}\{v, w\}$.
b) $\quad \mathbf{T} \quad \mathbf{F} \quad$ The orthogonal projection of y onto W depends on the basis selected for W.
c) $\quad \mathbf{T} \quad \mathbf{F} \quad$ If $\left\{v_{1}, v_{2}, v_{3}\right\}$ is an orthogonal basis of W then $\left\{v_{1}, v_{2}, 5 v_{3}\right\}$ is an orthogonal basis for W.
d) $\quad \mathbf{T} \quad \mathbf{F} \quad$ If P is orthonormal then $P^{-1}=P^{T}$
e) $\mathbf{T} \quad \mathbf{F} \quad$ The quadratic form Q is positive definite if for all non-zero vectors $Q(x) \geq 0$.
2. [6 points] Let $W=\operatorname{Span}\left\{v_{1}, v_{2}\right\}$ with $v_{1}=\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)$ and $v_{2}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$.

Find $y=\operatorname{proj}_{W}\left(\begin{array}{l}1 \\ 1 \\ 7\end{array}\right)$. Justify your answer.
3. $[6$ points $]$ Let $v_{1}=\left(\begin{array}{c}4 \\ -2 \\ 5\end{array}\right), v_{2}=\left(\begin{array}{c}-2 \\ 1 \\ 2\end{array}\right)$ and $v_{3}=\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)$.
a) Compute $v_{1} \cdot v_{2}, v_{2} \cdot v_{3}$ and $v_{1} \cdot v_{3}$ (Show your work).
b) Is $\left\{v_{1}, v_{2}, v_{3}\right\}$ a basis of \mathbf{R}^{3} ? Justify your answer.
4. [8pts]

Find the best approximation to $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ by vectors of the form $c_{1}\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)+c_{2}\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$. What is the error in your approximation?
5. [10 points]

Apply the Gram-Schmidt procedure to the vectors $v_{1}=\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right), v_{2}=\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right)$ and $v_{3}=\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right)$ and give an orthonormal basis for $\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}\right\}$.
6. [10 points] Let $Q\left(x_{1}, x_{2}\right)=3 x_{1}^{2}+2 x_{1} x_{2}+3 x_{2}^{2}$. There is a matrix P such that the change of variables $y=P^{-1} x$ gives the following form $Q(y)=a y_{1}^{2}+b y_{2}^{2}$.
a) Find the matrix associated to $Q(x)=x^{T} A x$
b) Find an orthogonal decomposition for $A=P D P^{T}$
c) Give the values of a and b
d) Is the quadratic form $Q(x)$ indefinite? Justify your answer.

Scoring Table

Please do not write on this area.

1	2	3	4	5	6	Total

[Scratch work below this line]

