MATH 2802 N1-N3 QUIZ 1 SOLUTIONS

JANUARY 19TH, 2018
The quiz has a total of 10 points and you have 10 minutes. Read carefully.
(1) (2 points each) For each of the following statements, circle the correct answer (row or column):

Let A be an $n \times m$ matrix and b be a vector in \mathbb{R}^{m}.

- If all columns of A have a pivot, then there is a unique solution to the system.
- If all rows of A have a pivot, then there is no $b \in \mathbb{R}^{m}$ that makes the equation inconsistent.
(2) ($\mathbf{2 p t s}$) Translate the traffic flow diagram to a system of linear equations

Solution. The system is given by

$$
\begin{array}{r}
x_{6}-x_{1}=-4 \\
x_{1}-x_{2}=11 \\
x_{2}-x_{3}=-13 \\
x_{3}-x_{4}=6 \\
x_{4}-x_{5}=-10 \\
x_{5}-x_{6}=10
\end{array}
$$

(3) (1 point each) From the system of linear equations of previous question. Write down the asociated
(a) augmented matrix,
(b) vector equation,
(c) matrix equation,
(d) homogeneous matrix equation.

Solution.

(a)

$$
\left(\begin{array}{cccccc:c}
-1 & 0 & 0 & 0 & 0 & 1 & -4 \\
1 & -1 & 0 & 0 & 0 & 0 & 11 \\
0 & 1 & -1 & 0 & 0 & 0 & -13 \\
0 & 0 & 1 & -1 & 0 & 0 & 6 \\
0 & 0 & 0 & 1 & -1 & 0 & -10 \\
0 & 0 & 0 & 0 & 1 & -1 & 10
\end{array}\right)
$$

(b)
$x_{1}\left(\begin{array}{c}-1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right)+x_{1}\left(\begin{array}{c}1 \\ 0 \\ 0 \\ 0 \\ 0 \\ -1\end{array}\right)+x_{1}\left(\begin{array}{c}0 \\ -1 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right)+x_{1}\left(\begin{array}{c}0 \\ 0 \\ -1 \\ 1 \\ 0 \\ 0\end{array}\right)+x_{1}\left(\begin{array}{c}0 \\ 0 \\ 0 \\ -1 \\ 1 \\ 0\end{array}\right)+x_{1}\left(\begin{array}{c}0 \\ 0 \\ 0 \\ 0 \\ -1 \\ 1\end{array}\right)=x_{1}\left(\begin{array}{c}-4 \\ 11 \\ -13 \\ 6 \\ -10 \\ 10\end{array}\right)$
(c)

$$
\left(\begin{array}{cccccc}
-1 & 0 & 0 & 0 & 0 & 1 \\
1 & -1 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 & -1
\end{array}\right) x=\left(\begin{array}{c}
-4 \\
11 \\
-13 \\
6 \\
-10 \\
10
\end{array}\right)
$$

(d)

$$
\left(\begin{array}{cccccc}
-1 & 0 & 0 & 0 & 0 & 1 \\
1 & -1 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 & -1
\end{array}\right) x=0
$$

