Recitation Section:

Math 2802 N1-N3 Quiz

Solutions

The quiz has a total of 10 points and you have 15 minutes. Read carefully and clearly justify how you obtained your answers.

1. [6 points]

Let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ be defined as $T\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\binom{2 x+3 y-z}{4 x+6 y-2 z}$
a) Find the standard matrix for T .
b) Draw a picture of the range T .
c) Is it onto? If not, find a vector b in \mathbf{R}^{2} which is not in the range. (It is enough to use the picture in (b).)

Solution.

a) [3 pts] We have to plug in the unit coordinate vectors to get the columns:

$$
T\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\binom{2}{4} \quad T\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\binom{3}{6} \quad T\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\binom{-1}{-2} .
$$

Therefore the standard matrix for T is

$$
\left(\begin{array}{lll}
2 & 3 & -1 \\
4 & 6 & -2
\end{array}\right) .
$$

b) [2 pts] The range of T is the span of the columns of the standard matrix. All three columns lie on the line spanned by $\binom{1}{2}$, so the range is just this line.

c) [$\mathbf{1} \mathbf{p t s}$] The range of T is a line in \mathbf{R}^{2}, so it is strictly smaller than the codomain. Hence T is not onto. Looking at the picture, we see that, for instance, $\binom{1}{0}$ is not in the range.
2. [4 points] In a certian region, about 6% of a city's population moves to the surrounding suburbs each year, and about 4% of the suburban population movees
into the city. In 2017, there where 10,000,000 residents in the city and 800,000 in the suburbs.

Set up a difference equation that describes this situation, where x_{0} is the initial population in 2017.

Solution.

[3 pts] Let $A=\left(\begin{array}{cc}.94 & .4 \\ .6 & .96\end{array}\right)$, this matrix represents the flow between city and suburban population. The first column represents the flow from the city; from a 100% percent population of the city (that is represented by e_{1}) we have

$$
A e_{1}=\binom{.94}{.4}
$$

94% stays in the city and 4% moves to the suburbs.
Similarly, the second column represents the flow from the suburbs; from a 100% percent population of the suburbs (that is represented by e_{2}) we have

$$
A e_{2}=\binom{.4}{.96}
$$

4% moves to the city and 96% stays in the suburbs.
[1 pt] If we are given the population on 2017, we can set $x_{0}=\left(\begin{array}{c}10 \\ 000 \\ 000 \\ 80 \\ 000\end{array}\right)$ and the population on 2018 will be given by $x_{1}=A x_{0}$.

