Math 2802 N1-N3 Quiz

Solutions

The quiz has a total of 10 points and you have 15 minutes. Read carefully and clearly justify how you obtained your answers.

1. [3 points] Find all the values of h for which the following vectors are linearly dependent:

$$
v_{1}=\left(\begin{array}{c}
1 \\
-2 \\
4
\end{array}\right) \quad v_{2}=\left(\begin{array}{c}
3 \\
-5 \\
10
\end{array}\right) \quad v_{3}=\left(\begin{array}{c}
-1 \\
5 \\
h
\end{array}\right)
$$

Solution.

Place the vectors are columns of a matrix and row reduce to find the number of pivot columns:

$$
\left(\begin{array}{ccc}
1 & 3 & -1 \\
-2 & -5 & 5 \\
4 & 10 & h
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 3 & -1 \\
0 & 1 & 3 \\
0 & -2 & h+4
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 3 & -1 \\
0 & 1 & 3 \\
0 & 0 & h+10
\end{array}\right)
$$

The vectors are linearly independent if there is one pivot in each column. Thus the vectors are linearly dependent only when $h=-10$.
2. [3 points] Is the following transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ invertible? Justify your answer.

$$
T\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
3 x-y+z \\
-5 x+5 y-2 z \\
10 x+4 z
\end{array}\right)
$$

Solution.

The matrix corresponding to T is given by $A=\left(\begin{array}{ccc}3 & -1 & 1 \\ -5 & 5 & -2 \\ 10 & 0 & -4\end{array}\right)$.
Note that the column vectors of A are linearly independent (by the problem above). Thus the transformation is invertible (by the invertible matrix theorem).
3. [4 points]

For this problem, use the following row-reduction of A.

$$
A=\left(\begin{array}{ccccc}
1 & -3 & 4 & -1 & 5 \\
3 & -9 & 7 & -2 & 9 \\
-2 & 6 & -3 & 1 & -4 \\
-1 & 3 & 6 & -1 & 7
\end{array}\right) \sim\left(\begin{array}{ccccc}
1 & -3 & 4 & -1 & 5 \\
0 & 0 & -5 & 1 & -6 \\
0 & 0 & 5 & -1 & 6 \\
0 & 0 & 10 & -2 & 12
\end{array}\right) \sim\left(\begin{array}{ccccc}
1 & -3 & 4 & -1 & 5 \\
0 & 0 & -5 & 1 & -6 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Let $A=L U$ where L is a lower triangular matrix and U is an echelon form.
a) The dimensions of L : \qquad rows \times \qquad columns
b) The dimensions of U : \qquad rows \times \qquad columns
c) Construct the matrices L and U.

Solution.

a) The dimensions of $L: 4 \times 4$
b) The dimensions of $U: 4 \times 5$
c) The matrix U is the (not-reduced) echelon form obtained in the row reduction above.

$$
U=\left(\begin{array}{ccccc}
1 & -3 & 4 & -1 & 5 \\
0 & 0 & -5 & 1 & -6 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

To obtain L, the first pivot was located on the first column and the entries from the pivot and below were $\left(\begin{array}{c}1 \\ 3 \\ -2 \\ -1\end{array}\right)$. The second pivot was located on the third column and the entries from the pivot and below were $\left(\begin{array}{c}5 \\ -5 \\ 10\end{array}\right)$; normalizing so that the first entry is a one: $\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right)$.

The are no more pivots. Now, start with the matrix $L=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ * & 1 & 0 & 0 \\ * & * & 1 & 0 \\ * & * & * & 1\end{array}\right)$ and replace the vectors we have in the first two columns. The remaining undeclared entry on the third columns should then be zero.

$$
L=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
3 & 1 & 0 & 0 \\
-2 & -1 & 1 & 0 \\
-1 & -2 & 0 & 1
\end{array}\right)
$$

