Recitation Section:

Math 2802 N1-N3 Quiz

Solutions

The quiz has a total of 10 points and you have 15 minutes. Read carefully and clearly justify how you obtained your answers.

1. [2 points] (Hint: use a specific example if you want to test your answer)

Let A and B be a 3×3 matrix with $\operatorname{det}(A)=8$. If the rows of A and B are place as follows: $\quad A=\left(\begin{array}{ccc}- & r_{1} & - \\ - & r_{2} & - \\ - & r_{3} & -\end{array}\right) \quad B=\left(\begin{array}{ccc}- & r_{3} & - \\ - & r_{2} & - \\ - & r_{1} & -\end{array}\right)$.

Then $\operatorname{det}(B)$ equals: \qquad

Solution.

To go from A to B we have to perform 3 row swaps for example

$$
\left(\begin{array}{lll}
- & r_{1} & - \\
- & r_{2} & - \\
- & r_{3} & -
\end{array}\right) \sim\left(\begin{array}{lll}
- & r_{2} & - \\
- & r_{1} & - \\
- & r_{3} & -
\end{array}\right) \sim\left(\begin{array}{lll}
- & r_{2} & - \\
- & r_{3} & - \\
- & r_{1} & -
\end{array}\right) \sim\left(\begin{array}{lll}
- & r_{3} & - \\
- & r_{2} & - \\
- & r_{1} & -
\end{array}\right)
$$

Therefore, we have $\operatorname{det}(B)=(-1)^{3} \operatorname{det}(A)=-8$.
2. [1 point] Let B be a 3×3 matrix If $\operatorname{rank}(B)=2$, then

Dimension of $N u l(B)$ equals \qquad

Solution.

By the rank theorem $\operatorname{dim}(N u l B)+\operatorname{rank}(B)=3 . \operatorname{Sodim}(N u l B)=1$
3. Start with this row reduction of A to find... $\quad A=\left(\begin{array}{cccc}-3 & 9 & -2 & -7 \\ 2 & -6 & 4 & 8 \\ 3 & -9 & -2 & 2\end{array}\right) \sim$ $\left(\begin{array}{cccc}1 & -3 & 6 & 9 \\ 0 & 0 & 4 & 5 \\ 0 & 0 & 0 & 0\end{array}\right)$
a) [2 points] the value for $\operatorname{rank}(A)$
b) $[2$ points] a basis for $\operatorname{Col} A$,
c) [3 points] a basis for NulA,

Solution.

a) The value for $\operatorname{rank}(A)=2$ because there are two pivots in A
b) The column pivots are the first and the third ones. So a basis for ColA is

$$
\left\{\left(\begin{array}{c}
-3 \\
2 \\
3
\end{array}\right),\left(\begin{array}{c}
-2 \\
4 \\
-2
\end{array}\right)\right\}
$$

c) For a basis of NulA, we find the solution to the homogeneous equation of $A x=0$:

$$
\begin{gathered}
x_{1}-3 x_{2}+6 x_{3}+9 x_{4}=0 \\
+4 x_{3}+5 x_{4}=0
\end{gathered}
$$

Solving for x_{1} and x_{3} (leaving x_{2} and x_{4} free) gives

$$
\begin{gathered}
x_{1}=3 x_{2}-\frac{3}{2} x_{4} \\
+x_{3}=\quad-\frac{5}{4} x_{4} \\
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=x_{2}\left(\begin{array}{l}
3 \\
1 \\
0 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{c}
\frac{-3}{2} \\
0 \\
\frac{-5}{4} \\
1
\end{array}\right) \\
= \\
=x_{2}\left(\begin{array}{l}
3 \\
1 \\
0 \\
0
\end{array}\right)+\frac{x_{4}}{4}\left(\begin{array}{c}
-6 \\
0 \\
-5 \\
4
\end{array}\right)
\end{gathered}
$$

So basis for NulA are, for example,

$$
\begin{aligned}
& \left\{\left(\begin{array}{l}
3 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
\frac{-3}{2} \\
0 \\
\frac{-5}{4} \\
1
\end{array}\right)\right\} \\
& \left\{\left(\begin{array}{l}
3 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
-6 \\
0 \\
-5 \\
4
\end{array}\right)\right\}
\end{aligned}
$$

