Math 2802 N1-N3 Quiz Solutions

The quiz has a total of 10 points and you have 15 minutes. Read carefully and clearly justify how you obtained your answers.

1. [3 points]

- a) If λ + 5 is a factor of the characteristic polynomial det($A \lambda I$), then an eigenvalue of *A* is:
- **b)** Give an example of a 2×2 matrix that is diagonalizable but not invertible.

Solution.

- **a)** Eigenvalue is -5, since this is the value of λ that makes det $(A \lambda I) = 0$.
- **b)** For example $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ is already diagonal but is not invertible.
- **2.** [3pts] Let $A = \begin{pmatrix} 10 & -5 \\ 5 & 10 \end{pmatrix}$
 - a) Compute the characteristic polynomial of *A*.
 - **b)** How many real eigenvalues does *A* have?

Solution.

- **a)** $f(\lambda) = (10 \lambda)^2 + 25$
- **b)** If $f(\lambda) = 0$ then $(10 \lambda)^2 = -25$. If there was a real root to $f(\lambda)$ then that would mean that a squared real number (i.e $(10 \lambda)^2$) is negative, which is impossible. Alternatively, from the quadratic formula we see that the roots of $f(\lambda)$ are only complex numbers.

3. [4pts] Let
$$A = \begin{pmatrix} 4 & -3 & 6 & -8 \\ 0 & 1 & -6 & 0 \\ 0 & 0 & 4 & 3 \\ 0 & 0 & 0 & -2 \end{pmatrix}$$
.

- a) What is the algebraic multiplicity of eigenvalue 4?
- **b)** What is the maximum dimension of the 4-eigenspace?
- **c)** Describe the steps to find the 4-eigenspace of *A*.

Solution.

- a) 2; you can read this off from the diagonal entries.
- **b)** 2.

c) Find the solution set for the equation (A - 4I)x = 0 and this is precisely the 4-eigenspace of *A*.