Math 2802 N1-N3 Quiz Solutions

The quiz has a total of 10 points and you have 15 minutes. Read carefully and clearly justify how you obtained your answers.

1. [6 points] Let $A = \begin{pmatrix} 2 & 0 \\ -1 & 1 \\ 0 & 2 \end{pmatrix}$ and $b = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$. The least-square solution to Ax = b is $\hat{x} = \begin{pmatrix} 1/3 \\ -1/3 \end{pmatrix}$. Compute the error associated to this least-squares solution. (*Hint: The error is the distance between two vectors*)

Solution.

The desired solution *x* should satisfy Ax = b. Instead, the best solution is \hat{x} , which computes

$$A\widehat{x} = \begin{pmatrix} 2 & 0\\ -1 & 1\\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1/3\\ -1/3 \end{pmatrix} = \frac{1}{3} \left(\begin{pmatrix} 2\\ -1\\ 0 \end{pmatrix} - \begin{pmatrix} 0\\ 1\\ 2 \end{pmatrix} \right) = \frac{1}{3} \begin{pmatrix} 2\\ -2\\ -2 \end{pmatrix}.$$

Therefore, the error is

$$||Ax - A\hat{x}|| = ||b - A\hat{x}|| = ||\binom{-1/3}{2/3}_{-1/3}|| = \frac{1}{3}\sqrt{1 + 4 + 1} = \sqrt{2/3}$$

2. [4 pts] Consider a best fit parabola $y = \beta_2 x^2 + \beta_1 x$ for the following data points. Provide a design matrix *A* and observation vector *y* so that the least-squares solution to $A\binom{\beta_1}{\beta_2} = y$ gives the parameters β_1, β_2 . (*Do not solve the least-squares problem*)

x	1	2	3	4	5
y	2.8	3.7	4.6	4.8	5.2

Solution.

The parabola $\beta_2 x^2 + \beta_1 x$ predicts that for, say x = 3, the value of the second coordinate is $3\beta_1 + 9\beta_2$, and the observation is 3.7. This gives a system of equations were the variables are β_1 and β_2 . In matrix form:

$$A\binom{\beta_{1}}{\beta_{2}} = y \implies \begin{pmatrix} 1 & 1 \\ 2 & 4 \\ 3 & 9 \\ 4 & 16 \\ 5 & 25 \end{pmatrix} \binom{\beta_{1}}{\beta_{2}} = \begin{pmatrix} 2.8 \\ 3.7 \\ 4.6 \\ 4.8 \\ 5.2 \end{pmatrix}$$