Math 2802 N1-N3 Quiz

Solutions

The quiz has a total of 10 points and you have 15 minutes. Read carefully and clearly justify how you obtained your answers.

1. [6 points] Let $A=\left(\begin{array}{cc}2 & 0 \\ -1 & 1 \\ 0 & 2\end{array}\right)$ and $b=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$. The least-square solution to $A x=b$ is $\hat{x}=\binom{1 / 3}{-1 / 3}$. Compute the error associated to this least-squares solution.
(Hint: The error is the distance between two vectors)

Solution.

The desired solution x should satisfy $A x=b$. Instead, the best solution is \widehat{x}, which computes

$$
A \widehat{x}=\left(\begin{array}{cc}
2 & 0 \\
-1 & 1 \\
0 & 2
\end{array}\right)\binom{1 / 3}{-1 / 3}=\frac{1}{3}\left(\left(\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right)-\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)\right)=\frac{1}{3}\left(\begin{array}{c}
2 \\
-2 \\
-2
\end{array}\right) .
$$

Therefore, the error is

$$
\|A x-A \widehat{x}\|=\|b-A \widehat{x}\|=\left\|\left(\begin{array}{c}
-1 / 3 \\
2 / 3 \\
-1 / 3
\end{array}\right)\right\|=\frac{1}{3} \sqrt{1+4+1}=\sqrt{2 / 3}
$$

2. [4 pts] Consider a best fit parabola $y=\beta_{2} x^{2}+\beta_{1} x$ for the following data points. Provide a design matrix A and observation vector y so that the least-squares solution to $A\binom{\beta_{1}}{\beta_{2}}=y$ gives the paramaters β_{1}, β_{2}. (Do not solve the least-squares problem)

x	1	2	3	4	5
y	2.8	3.7	4.6	4.8	5.2

Solution.

The parabola $\beta_{2} x^{2}+\beta_{1} x$ predicts that for, say $x=3$, the value of the second coordinate is $3 \beta_{1}+9 \beta_{2}$, and the observation is 3.7. This gives a system of equations were the variables are β_{1} and β_{2}. In matrix form:

$$
A\binom{\beta_{1}}{\beta_{2}}=y \Longrightarrow\left(\begin{array}{cc}
1 & 1 \\
2 & 4 \\
3 & 9 \\
4 & 16 \\
5 & 25
\end{array}\right)\binom{\beta_{1}}{\beta_{2}}=\left(\begin{array}{c}
2.8 \\
3.7 \\
4.6 \\
4.8 \\
5.2
\end{array}\right)
$$

