## Math 2802 N1-N3 Quiz

Solutions

The quiz has a total of 10 points and you have 15 minutes. Read carefully and clearly justify how you obtained your answers.

1. [- points] Write the definition of Steady-vector of a stochastic matrix $P$; and find two distinct steady-state vectors for $P=\left(\begin{array}{ccc}1 / 2 & 0 & 1 / 2 \\ 0 & 1 & 0 \\ 1 / 2 & 0 & 1 / 2\end{array}\right)$

## Solution.

A steady-state vector $v$ of a stochastic matrix $A$ has entries summing to one and satisfies $A v=v$.

Two steady-sate vectors for $P$ are $\left(\begin{array}{c}1 / 2 \\ 0 \\ 1 / 2\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$.
2. [-pts] Answer true or false
a) If $\lambda=1$ is an eigenvalue of a stochastic matrix $P$, then $P$ is regular.
b) If $P q=q$ for the transition matrix of a markov chain, then the entries in $q$ are interpreted as occupation times of the sates in the long run.
c) If $C$ is the compsumtion matrix for an economy with final demand $d$ then the production vector can be computed using $x=(C-I)^{-1} d$.

## Solution.

a) False. All stochastic matrices have $\lambda=1$ as eigenvalue.
b) False. This is only true if $P$ is a regular stochastic matrix.
c) False. The inverse should be for matrix $(I-C)$.

