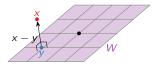
Section 6.2

Orthogonal Sets

Best Approximation

Due to measurement error, the measured x is not actually in the subspace it must lie on (for theoretical reasons).



Best approximation: y is the *closest point* to x on W.

Replace x with its orthogonal projection y onto W.

How do you know that y is the closest point?

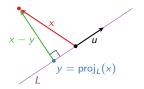
Orthogonal Projection onto a Line

Theorem

Let $L = \text{Span}\{u\}$ be a line in \mathbb{R}^n , and let x be in \mathbb{R}^n . The closest point to x on L is the point

$$\operatorname{proj}_{L}(x) = \frac{x \cdot u}{u \cdot u} u.$$

This point is called the **orthogonal projection of** x **onto** L.



Choose term 'ortogonal' because x - y is in L^{\perp} . That is, $u \cdot (x - y) = 0$:

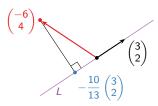
$$u \cdot (x - y) = u \cdot \left(x - \frac{x \cdot u}{u \cdot u}u\right) = u \cdot x - \frac{x \cdot u}{u \cdot u}(u \cdot u) = u \cdot x - x \cdot u = 0.$$

Orthogonal Projection onto a Line Example

Compute the *orthogonal projection* of $x = \begin{pmatrix} -6 \\ 4 \end{pmatrix}$ onto the line *L spanned by*

$$u=\binom{3}{2}$$
.

$$y = \text{proj}_{L}(x) = \frac{x \cdot u}{u \cdot u} u = \frac{-18 + 8}{9 + 4} \begin{pmatrix} 3 \\ 2 \end{pmatrix} = -\frac{10}{13} \begin{pmatrix} 3 \\ 2 \end{pmatrix}.$$



Orthogonal Sets

Definition

A set of *nonzero* vectors is **orthogonal** if each pair of vectors is **orthogonal**. Such set is **orthonormal** if, in addition, each vector is a *unit vector*.

Example:
$$\mathcal{B} = \left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\-2\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\-1 \end{pmatrix} \right\}$$
 is an orthogonal set.

Check:

$$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} = 0 \qquad \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = 0 \qquad \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = 0.$$

Orthogonal bases

Linearly independent

An orthogonal set of vectors $\mathcal{B} = \{u_1, u_2, \dots, u_m\}$ is linearly independent. Therefore \mathcal{B} forms a basis for $W = \operatorname{Span} \mathcal{B}$.

Why?

Suppose $\{u_1, u_2, \dots, u_m\}$ is orthogonal and that

$$c_1u_1+c_2u_2+\cdots+c_mu_m=0$$

Now **dot-multiply by** u_1 . We see that c_1 *must be zero*:

$$0 = u_1 \cdot (c_1 u_1 + c_2 u_2 + \dots + c_m u_m) = c_1 (u_1 \cdot u_1) + 0 + 0 + \dots + 0.$$

Similarly for the other c_i 's (there is only trivial solution). Hence the set is linearly independent.

B-coordinates for Orthogonal bases

Theorem

Let $\mathcal{B}=\{u_1,u_2,\ldots,u_m\}$ be an orthogonal set, and let x be a vector in $W=\operatorname{Span}\mathcal{B}.$ Then

$$x = \sum_{i=1}^{m} \frac{x \cdot u_i}{u_i \cdot u_i} u_i = \frac{x \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{x \cdot u_2}{u_2 \cdot u_2} u_2 + \dots + \frac{x \cdot u_m}{u_m \cdot u_m} u_m.$$

An advantage

For orthogonal bases, is it's easy to compute the \mathcal{B} -coordinates of a vector x in W:

$$\left(\frac{x \cdot u_1}{u_1 \cdot u_1}, \frac{x \cdot u_2}{u_2 \cdot u_2}, \dots, \frac{x \cdot u_m}{u_m \cdot u_m}\right).$$

Why? If
$$x = c_1 u_1 + c_2 u_2 + \dots + c_m u_m$$
, then
$$x \cdot u_1 = c_1 (u_1 \cdot u_1) + 0 + \dots + 0 \Longrightarrow c_1 = \frac{x \cdot u_1}{u_1 \cdot u_1}.$$

Similarly for the other c_i 's.

Orthogonal Bases

Geometric reason

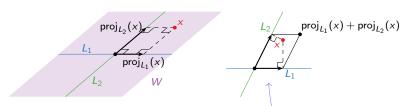
Theorem

Let $\mathcal{B}=\{u_1,u_2,\ldots,u_m\}$ be an orthogonal set, and let x be a vector in $W=\operatorname{Span}\mathcal{B}.$ Then $\operatorname{proj}_{L_2}(u_2)$

$$x = \sum_{i=1}^{m} \frac{x \cdot u_i}{u_i \cdot u_i} u_i = \frac{x \cdot u_1}{u_1 \cdot u_1} u_1 + \underbrace{\frac{x \cdot u_2}{u_2 \cdot u_2} u_2}_{} + \dots + \underbrace{\frac{x \cdot u_m}{u_m \cdot u_m} u_m}_{}.$$

If L_i is the line spanned by u_i , then this says

$$x = \operatorname{proj}_{L_1}(x) + \operatorname{proj}_{L_2}(x) + \cdots + \operatorname{proj}_{L_m}(x).$$



Warning: This only works for an orthogonal basis.

Orthogonal Bases

Example

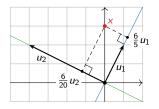
Problem: Find the \mathcal{B} -coordinates of $x = \binom{0}{3}$, where

$$\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \ \begin{pmatrix} -4 \\ 2 \end{pmatrix} \right\}.$$

Old way:
$$\begin{pmatrix} 1 & -4 & | & 0 \\ 2 & 2 & | & 3 \end{pmatrix} \xrightarrow{\text{rref}} \begin{pmatrix} 1 & 0 & | & 6/5 \\ 0 & 1 & | & 6/20 \end{pmatrix} \implies [x]_{\mathcal{B}} = \begin{pmatrix} 6/5 \\ 6/20 \end{pmatrix}.$$

New way: Exploit that \mathcal{B} is an *orthogonal basis*.

$$x = \frac{x \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{x \cdot u_2}{u_2 \cdot u_2} u_2 = \frac{3 \cdot 2}{1^2 + 2^2} u_1 + \frac{3 \cdot 2}{(-4)^2 + 2^2} u_2 = \frac{6}{5} u_1 + \frac{6}{20} u_2.$$



$$\implies [x]_{\mathcal{B}} = \begin{pmatrix} 6/5 \\ 6/20 \end{pmatrix}.$$

Orthogonal Bases

Problem: Find the *B*-coordinates of x = (6, 1, -8) where

$$\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \; \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}, \; \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \right\}.$$

Answer: Check that \mathcal{B} is *orthogonal basis*, then

$$[x]_{\mathcal{B}} = \left(\frac{x \cdot u_1}{u_1 \cdot u_1}, \frac{x \cdot u_2}{u_2 \cdot u_2}, \frac{x \cdot u_3}{u_3 \cdot u_3}\right)$$

$$= \left(\frac{6 \cdot 1 + 1 \cdot 1 - 8 \cdot 1}{1^2 + 1^2 + 1^2}, \frac{6 \cdot 1 + 1 \cdot (-2) - 8 \cdot 1}{1^2 + (-2)^2 + 1^2}, \frac{6 \cdot 1 + 1 \cdot 0 + (-8) \cdot (-1)}{1^2 + 0^2 + (-1)^2}\right)$$

$$= \left(-\frac{1}{3}, -\frac{2}{3}, 7\right).$$

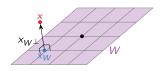
Check:

$$\begin{pmatrix} 6 \\ 1 \\ -8 \end{pmatrix} = -\frac{1}{3} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \frac{2}{3} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} + 7 \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}.$$

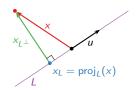
Section 6.3

Orthogonal Projections

Motivation



Example with a line: The closest point to x in L is $\operatorname{proj}_{L}(x) = \frac{x \cdot u}{u \cdot u} u$



Let $u = \binom{3}{2}$ and let $L = \operatorname{Span}\{u\}$. Let $x = \binom{-6}{4}$. In this case,

$$x_L = \operatorname{proj}_L(x) = -\frac{10}{13} \begin{pmatrix} 3 \\ 2 \end{pmatrix} \qquad x_{L^\perp} = x - \operatorname{proj}_L(x) = \begin{pmatrix} -6 \\ 4 \end{pmatrix} + \frac{10}{13} \begin{pmatrix} 3 \\ 2 \end{pmatrix}.$$

Orthogonal Projections

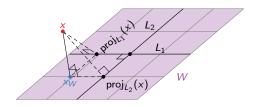
Definition

Let W be a subspace of \mathbb{R}^n , and let $\{u_1, u_2, \dots, u_m\}$ be an *orthogonal* basis for W. The **orthogonal projection** of a vector x onto W is

$$\operatorname{proj}_{W}(x) \stackrel{\mathrm{def}}{=} \sum_{i=1}^{m} \frac{x \cdot u_{i}}{u_{i} \cdot u_{i}} u_{i}.$$

Note: If $L_i = \text{Span}\{u_i\}$. Then $\frac{x \cdot u_i}{u_i \cdot u_i} u_i = \text{proj}_{L_i}(x)$.

The orthogonal projection is formed by adding orthogonal projections onto perpendicular lines.



Orthogonal Projections Properties

We can think of orthogonal projection as a *transformation*:

$$\operatorname{proj}_W \colon \mathbf{R}^n \longrightarrow \mathbf{R}^n \qquad x \mapsto \operatorname{proj}_W(x).$$

Theorem

Let W be a subspace of \mathbb{R}^n .

- 1. $proj_W$ is a *linear* transformation.
- 2. For every x in W, we have $proj_W(x) = x$.
- 3. For every x in W^{\perp} , we have $\text{proj}_{W}(x) = 0$.
- 4. The range of $proj_W$ is W.

The following is the property we wanted all along.

Best Approximation Theorem

Let W be a subspace of \mathbb{R}^n , and let x be a vector in \mathbb{R}^n . Then $y = \operatorname{proj}_W(x)$ is the closest point in W to x, in the sense that

$$dist(x, y) \le dist(x, y')$$
 for all y' in W .

Orthogonal Projections

Best approximation

Every vector x can be decompsed uniquely as $x = x_W + x_{W^{\perp}}$ where $x_W = y$ is the closest vector to x in W, and $x_{W^{\perp}} = x - y$ is in $x_W = x - y$ in $x_W = x - y$ is in $x_W = x - y$ is in $x_W = x - y$ in $x_W = x - y$ is in $x_W = x - y$ in

Theorem

Let W be a subspace of \mathbb{R}^n , and let x be a vector in \mathbb{R}^n . Then $\operatorname{proj}_{\mathcal{W}}(x)$ is the closest point to x in W. Therefore

$$x_W = \operatorname{proj}_W(x)$$
 $x_{W^{\perp}} = x - \operatorname{proj}_W(x).$

Why? Let $y = \text{proj}_W(x)$. We need to show that x - y is in W^{\perp} . In other words, $u_i \cdot (x - y) = 0$ for each i. Let's do u_1 :

$$u_1 \cdot (x - y) = u_1 \cdot \left(x - \sum_{i=1}^m \frac{x \cdot u_i}{u_i \cdot u_i} u_i \right) = u_1 \cdot x - \frac{x \cdot u_1}{u_1 \cdot u_1} (u_1 \cdot u_1) - 0 - \dots = 0.$$

Poll

Let W be a subspace of \mathbf{R}^n .

Poll -

Let A be the matrix for $proj_W$. What are all the eigenvalues of A?

The 1-eigenspace is W.

The 0-eigenspace is W^{\perp} .

We have $\dim W + \dim W^{\perp} = n$,

so that gives n linearly independent eigenvectors already; and the answer is D.

What is the matrix for $\operatorname{proj}_W \colon \mathbf{R}^3 \to \mathbf{R}^3$, where

$$W = \mathsf{Span}\left\{ \begin{pmatrix} 1\\0\\-1 \end{pmatrix}, \ \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\}?$$

Answer: Recall how to compute the matrix for a linear transformation:

$$A = \left(\begin{array}{ccc} & & & \\ \mathsf{proj}_{W}(e_1) & & \mathsf{proj}_{W}(e_2) & & \mathsf{proj}_{W}(e_3) \\ & & & \end{array}\right).$$

We compute:

$$\begin{aligned} \operatorname{proj}_W(\mathbf{e}_1) &= \frac{e_1 \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{e_1 \cdot u_2}{u_2 \cdot u_2} u_2 = \frac{1}{2} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 5/6 \\ 1/3 \\ -1/6 \end{pmatrix} \\ \operatorname{proj}_W(\mathbf{e}_2) &= \frac{e_2 \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{e_2 \cdot u_2}{u_2 \cdot u_2} u_2 = 0 + \frac{1}{3} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1/3 \\ 1/3 \\ 1/3 \end{pmatrix} \\ \operatorname{proj}_W(\mathbf{e}_3) &= \frac{e_3 \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{e_3 \cdot u_2}{u_2 \cdot u_2} u_2 = -\frac{1}{2} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1/6 \\ 1/3 \\ 5/6 \end{pmatrix} \\ \end{aligned}$$
 Therefore $A = \begin{pmatrix} 5/6 & 1/3 & -1/6 \\ 1/3 & 1/3 & 1/3 \\ -1/6 & 1/3 & 5/6 \end{pmatrix}$.

Let A be the matrix for proj_W, where W is an m-dimensional subspace of \mathbb{R}^n .

Facts:

- 1. A is diagonalizable with eigenvalues 0 and 1;
- 2. it is similar to the diagonal matrix with m ones and n-mzeros on the diagonal, and 3. $A^2 = A$.

Example: If W is a plane in \mathbb{R}^3 , then A is similar to projection onto the xy-plane:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Why 1-2? Let v_1, v_2, \ldots, v_m be a basis for W, and let $v_{m+1}, v_{m+2}, \ldots, v_n$ be a basis for W^{\perp} . These are (linearly independent) eigenvectors with eigenvalues 1 and 0, respectively, and they form a basis for \mathbb{R}^n because there are n of them.

Why 3? Projecting twice is the same as projecting once:

$$\operatorname{proj}_{W} \circ \operatorname{proj}_{W} = \operatorname{proj}_{W} \implies A \cdot A = A.$$

Orthogonal Projections Minimum distance

What is the (minimum) distance from e_1 to $W = \text{Span} \left\{ \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$?

Answer: From e_1 to its closest point on W:

$$\mathsf{dist}(e_1,\mathsf{proj}_W(e_1)) = \|(e_1)_{W^\perp}\|.$$

$$\begin{aligned} & \mathsf{dist}(e_1,\mathsf{proj}_W(e_1)) \\ &= \left\| \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 5/6 \\ 1/3 \\ -1/6 \end{pmatrix} \right\| \\ &= \left\| \begin{pmatrix} 1/6 \\ -1/3 \\ -1/6 \end{pmatrix} \right\| \\ &= \sqrt{(1/6)^2 + (-1/3)^2 + (-1/6)^2} \\ &= \frac{1}{\sqrt{6}}. \end{aligned}$$

