Section 6.2

Orthogonal Sets

Best Approximation

Due to measurement error, the measured x is not actually in the subspace it must lie on (for theoretical reasons).

Best approximation: y is the closest point to x on W.
Replace x with its orthogonal projection y onto W.
How do you know that y is the closest point?

Orthogonal Projection onto a Line

Theorem
Let $L=\operatorname{Span}\{u\}$ be a line in \mathbf{R}^{n}, and let x be in \mathbf{R}^{n}. The closest point to x on L is the point

$$
\operatorname{proj}_{L}(x)=\frac{x \cdot u}{u \cdot u} u
$$

This point is called the orthogonal projection of x onto L.

Choose term 'ortogonal' because $x-y$ is in L^{\perp}. That is, $u \cdot(x-y)=0$:

$$
u \cdot(x-y)=u \cdot\left(x-\frac{x \cdot u}{u \cdot u} u\right)=u \cdot x-\frac{x \cdot u}{u \cdot u}(u \cdot u)=u \cdot x-x \cdot u=0 .
$$

Orthogonal Projection onto a Line

Example

Compute the orthogonal projection of $x=\binom{-6}{4}$ onto the line L spanned by

$$
u=\binom{3}{2}
$$

$$
y=\operatorname{proj}_{L}(x)=\frac{x \cdot u}{u \cdot u} u=\frac{-18+8}{9+4}\binom{3}{2}=-\frac{10}{13}\binom{3}{2} .
$$

Orthogonal Sets

Definition

A set of nonzero vectors is orthogonal if each pair of vectors is orthogonal. Such set is orthonormal if, in addition, each vector is a unit vector.

Example: $\mathcal{B}=\left\{\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)\right\}$ is an orthogonal set.
Check:

$$
\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right)=0 \quad\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)=0 \quad\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)=0 .
$$

Orthogonal bases

Linearly independent

An orthogonal set of vectors $\mathcal{B}=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ is linearly independent. Therefore \mathcal{B} forms a basis for $W=\operatorname{Span} \mathcal{B}$.

Why?

Suppose $\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ is orthogonal and that

$$
c_{1} u_{1}+c_{2} u_{2}+\cdots+c_{m} u_{m}=0
$$

Now dot-multiply by u_{1}. We see that c_{1} must be zero:

$$
0=u_{1} \cdot\left(c_{1} u_{1}+c_{2} u_{2}+\cdots+c_{m} u_{m}\right)=c_{1}\left(u_{1} \cdot u_{1}\right)+0+0+\cdots+0 .
$$

Similarly for the other c_{i} 's (there is only trivial solution). Hence the set is linearly independent.

\mathcal{B}-coordinates for Orthogonal bases

Theorem

Let $\mathcal{B}=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ be an orthogonal set, and let x be a vector in $W=\operatorname{Span} \mathcal{B}$. Then

$$
x=\sum_{i=1}^{m} \frac{x \cdot u_{i}}{u_{i} \cdot u_{i}} u_{i}=\frac{x \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\frac{x \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}+\cdots+\frac{x \cdot u_{m}}{u_{m} \cdot u_{m}} u_{m} .
$$

An advantage

For orthogonal bases, is it's easy to compute the \mathcal{B}-coordinates of a vector x in W :

$$
\left(\frac{x \cdot u_{1}}{u_{1} \cdot u_{1}}, \frac{x \cdot u_{2}}{u_{2} \cdot u_{2}}, \ldots, \frac{x \cdot u_{m}}{u_{m} \cdot u_{m}}\right) .
$$

Why? If $x=c_{1} u_{1}+c_{2} u_{2}+\cdots+c_{m} u_{m}$, then

$$
x \cdot u_{1}=c_{1}\left(u_{1} \cdot u_{1}\right)+0+\cdots+0 \Longrightarrow c_{1}=\frac{x \cdot u_{1}}{u_{1} \cdot u_{1}}
$$

Similarly for the other c_{i} 's.

Orthogonal Bases

Geometric reason

Theorem

Let $\mathcal{B}=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ be an orthogonal set, and let x be a vector in $W=\operatorname{Span} \mathcal{B}$. Then

$$
-\operatorname{proj}_{L_{2}}\left(u_{2}\right)
$$

$$
x=\sum_{i=1}^{m} \frac{x \cdot u_{i}}{u_{i} \cdot u_{i}} u_{i}=\frac{x \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\frac{x \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}+\cdots+\frac{x \cdot u_{m}}{u_{m} \cdot u_{m}} u_{m}
$$

If L_{i} is the line spanned by u_{i}, then this says

$$
x=\operatorname{proj}_{L_{1}}(x)+\operatorname{proj}_{L_{2}}(x)+\cdots+\operatorname{proj}_{L_{m}}(x)
$$

Warning: This only works for an orthogonal basis.

Orthogonal Bases

Example

Problem: Find the \mathcal{B}-coordinates of $x=\binom{0}{3}$, where

$$
\mathcal{B}=\left\{\binom{1}{2},\binom{-4}{2}\right\} .
$$

Old way:

$$
\left(\begin{array}{rr|r}
1 & -4 & 0 \\
2 & 2 & 3
\end{array}\right) \stackrel{\text { rref }}{\leadsto \sim}\left(\begin{array}{ll|r}
1 & 0 & 6 / 5 \\
0 & 1 & 6 / 20
\end{array}\right) \Longrightarrow[x]_{\mathcal{B}}=\binom{6 / 5}{6 / 20}
$$

New way: Exploit that \mathcal{B} is an orthogonal basis.

$$
x=\frac{x \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\frac{x \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}=\frac{3 \cdot 2}{1^{2}+2^{2}} u_{1}+\frac{3 \cdot 2}{(-4)^{2}+2^{2}} \boldsymbol{u}_{2}=\frac{6}{5} u_{1}+\frac{6}{20} u_{2} .
$$

$$
\Longrightarrow[x]_{\mathcal{B}}=\binom{6 / 5}{6 / 20} .
$$

Orthogonal Bases

Example

Problem: Find the \mathcal{B}-coordinates of $x=(6,1,-8)$ where

$$
\mathcal{B}=\left\{\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right),\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)\right\}
$$

Answer: Check that \mathcal{B} is orthogonal basis, then

$$
\begin{aligned}
{[x]_{\mathcal{B}} } & =\left(\frac{x \cdot u_{1}}{u_{1} \cdot u_{1}}, \frac{x \cdot u_{2}}{u_{2} \cdot u_{2}}, \frac{x \cdot u_{3}}{u_{3} \cdot u_{3}}\right) \\
& =\left(\frac{6 \cdot 1+1 \cdot 1-8 \cdot 1}{1^{2}+1^{2}+1^{2}}, \frac{6 \cdot 1+1 \cdot(-2)-8 \cdot 1}{1^{2}+(-2)^{2}+1^{2}}, \frac{6 \cdot 1+1 \cdot 0+(-8) \cdot(-1)}{1^{2}+0^{2}+(-1)^{2}}\right) \\
& =\left(-\frac{1}{3},-\frac{2}{3}, 7\right) .
\end{aligned}
$$

Check:

$$
\left(\begin{array}{c}
6 \\
1 \\
-8
\end{array}\right)=-\frac{1}{3}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)-\frac{2}{3}\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right)+7\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)
$$

Section 6.3

Orthogonal Projections

Motivation

Example with a line: The closest point to x in L is $\operatorname{proj}_{L}(x)=\frac{x \cdot u}{u \cdot u} u$

Let $u=\binom{3}{2}$ and let $L=\operatorname{Span}\{u\}$. Let $x=\binom{-6}{4}$. In this case,

$$
x_{L}=\operatorname{proj}_{L}(x)=-\frac{10}{13}\binom{3}{2} \quad x_{L \perp}=x-\operatorname{proj}_{L}(x)=\binom{-6}{4}+\frac{10}{13}\binom{3}{2} .
$$

Orthogonal Projections

Definition

Let W be a subspace of \mathbf{R}^{n}, and let $\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ be an orthogonal basis for W. The orthogonal projection of a vector x onto W is

$$
\operatorname{proj}_{W}(x) \stackrel{\text { def }}{=} \sum_{i=1}^{m} \frac{x \cdot u_{i}}{u_{i} \cdot u_{i}} u_{i} .
$$

Note: If $L_{i}=\operatorname{Span}\left\{u_{i}\right\}$. Then $\frac{x \cdot u_{i}}{u_{i} \cdot u_{i}} u_{i}=\operatorname{proj}_{L_{i}}(x)$.
The orthogonal projection is formed by adding orthogonal projections onto perpendicular lines.

Orthogonal Projections

Properties

We can think of orthogonal projection as a transformation:

$$
\operatorname{proj}_{w}: \mathbf{R}^{n} \longrightarrow \mathbf{R}^{n} \quad x \mapsto \operatorname{proj}_{w}(x)
$$

Theorem
Let W be a subspace of \mathbf{R}^{n}.

1. proj_{W} is a linear transformation.
2. For every x in W, we have $\operatorname{proj}_{W}(x)=x$.
3. For every x in W^{\perp}, we have $\operatorname{proj}_{W}(x)=0$.
4. The range of proj_{W} is W.

The following is the property we wanted all along.

Best Approximation Theorem

Let W be a subspace of \mathbf{R}^{n}, and let x be a vector in \mathbf{R}^{n}. Then $y=\operatorname{proj}_{W}(x)$ is the closest point in W to x, in the sense that

$$
\operatorname{dist}(x, y) \leq \operatorname{dist}\left(x, y^{\prime}\right) \quad \text { for all } \quad y^{\prime} \text { in } W .
$$

Orthogonal Projections

Best approximation

Every vector x can be decompsed uniquely as $x=x_{W}+x_{W \perp}$ where

- $x_{W}=y$ is the closest vector to x in W, and
- $x_{W \perp}=x-y$ is in W^{\perp}.

Theorem

Let W be a subspace of \mathbf{R}^{n}, and let x be a vector in \mathbf{R}^{n}. Then $\operatorname{proj}_{W}(x)$ is the closest point to x in W. Therefore

$$
x_{W}=\operatorname{proj}_{W}(x) \quad x_{W} \perp=x-\operatorname{proj}_{W}(x) .
$$

Why? Let $y=\operatorname{proj}_{W}(x)$. We need to show that $x-y$ is in W^{\perp}. In other words, $u_{i} \cdot(x-y)=0$ for each i. Let's do u_{1} :
$u_{1} \cdot(x-y)=u_{1} \cdot\left(x-\sum_{i=1}^{m} \frac{x \cdot u_{i}}{u_{i} \cdot u_{i}} u_{i}\right)=u_{1} \cdot x-\frac{x \cdot u_{1}}{u_{1} \cdot u_{1}}\left(u_{1} \cdot u_{1}\right)-0-\cdots=0$.

Poll

Let W be a subspace of \mathbf{R}^{n}.

$$
\begin{aligned}
& \text { Poll } \\
& \text { Let } A \text { be the matrix for proj}{ }_{W} \text {. What are all the eigenvalues of } A \text { ? } \\
& \begin{array}{lllllll}
\text { A. } 0 & \text { B. } 1 & \text { C. }-1 & \text { D. } 0,1 & \text { E. } 1,-1 & \text { F. } 0,-1 & \text { G. }-1,0,1
\end{array}
\end{aligned}
$$

The 1-eigenspace is W.
The 0 -eigenspace is W^{\perp}.
We have $\operatorname{dim} W+\operatorname{dim} W^{\perp}=n$,
so that gives n linearly independent eigenvectors already; and the answer is D.

Orthogonal Projections

Matrices

What is the matrix for $\operatorname{proj}_{W}: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$, where

$$
W=\operatorname{Span}\left\{\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right\} ?
$$

Answer: Recall how to compute the matrix for a linear transformation:

$$
A=\left(\begin{array}{ccc}
\mid & \mid & \mid \\
\operatorname{proj}_{W}\left(e_{1}\right) & \operatorname{proj}_{W}\left(e_{2}\right) & \operatorname{proj}_{W}\left(e_{3}\right)
\end{array}\right) .
$$

We compute:

$$
\begin{aligned}
& \operatorname{proj}_{W}\left(e_{1}\right)=\frac{e_{1} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\frac{e_{1} \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}=\frac{1}{2}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)+\frac{1}{3}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{c}
5 / 6 \\
1 / 3 \\
-1 / 6
\end{array}\right) \\
& \operatorname{proj}_{W}\left(e_{2}\right)=\frac{e_{2} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\frac{e_{2} \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}=0+\frac{1}{3}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
1 / 3 \\
1 / 3 \\
1 / 3
\end{array}\right) \\
& \operatorname{proj}_{W}\left(e_{3}\right)=\frac{e_{3} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\frac{e_{3} \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}=-\frac{1}{2}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)+\frac{1}{3}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{c}
-1 / 6 \\
1 / 3 \\
5 / 6
\end{array}\right)
\end{aligned}
$$

Therefore $A=\left(\begin{array}{ccc}5 / 6 & 1 / 3 & -1 / 6 \\ 1 / 3 & 1 / 3 & 1 / 3 \\ -1 / 6 & 1 / 3 & 5 / 6\end{array}\right)$.

Orthogonal Projections

Let A be the matrix for proj_{W}, where W is an m-dimensional subspace of \mathbf{R}^{n}.

Facts:

1. A is diagonalizable with eigenvalues 0 and 1 ;
2. it is similar to the diagonal matrix with m ones and $n-m$ zeros on the diagonal, and
3. $A^{2}=A$.

Example: If W is a plane in \mathbf{R}^{3}, then A is similar to projection onto the $x y$-plane:

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Why 1-2? Let $v_{1}, v_{2}, \ldots, v_{m}$ be a basis for W, and let $v_{m+1}, v_{m+2}, \ldots, v_{n}$ be a basis for W^{\perp}. These are (linearly independent) eigenvectors with eigenvalues 1 and 0 , respectively, and they form a basis for \mathbf{R}^{n} because there are n of them.
Why 3? Projecting twice is the same as projecting once:

$$
\operatorname{proj}_{W} \circ \operatorname{proj}_{W}=\operatorname{proj}_{W} \Longrightarrow A \cdot A=A .
$$

Orthogonal Projections

Minimum distance

What is the (minimum) distance from e_{1} to $W=\operatorname{Span}\left\{\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$?
Answer: From e_{1} to its closest point on W :

$$
\operatorname{dist}\left(e_{1}, \operatorname{proj}_{W}\left(e_{1}\right)\right)=\left\|\left(e_{1}\right)_{W \perp}\right\|
$$

$$
\begin{aligned}
& \operatorname{dist}\left(e_{1}, \operatorname{proj}_{w}\left(e_{1}\right)\right) \\
= & \left\|\left(\begin{array}{c}
1 \\
0 \\
0
\end{array}\right)-\left(\begin{array}{c}
5 / 6 \\
1 / 3 \\
-1 / 6
\end{array}\right)\right\| \\
= & \left\|\left(\begin{array}{c}
1 / 6 \\
-1 / 3 \\
-1 / 6
\end{array}\right)\right\| \\
= & \sqrt{(1 / 6)^{2}+(-1 / 3)^{2}+(-1 / 6)^{2}} \\
= & \frac{1}{\sqrt{6}} .
\end{aligned}
$$

