Section 1.3-1.4

Vector and Matrix Equations

Motivation

Linear algebra's *two viewpoints*:

- > Algebra: systems of equations and their solution sets
- Geometry: intersections of points, lines, planes, etc.

The **geometry** will give us *better insight into the properties* of systems of equations and their solution sets.

Most Important Today: Spans and Solutions to Equations

Let $\mathbf{b} \in \mathbf{R}^n$ and A be a matrix with columns $v_1, v_2, \ldots, v_n \in \mathbf{R}^n$:

$$A = \begin{pmatrix} | & | & | & | \\ v_1 & v_2 & \cdots & v_n \\ | & | & | & | \end{pmatrix}$$

The last condition is geometric.

Vectors

Elements of Rⁿ can be considered *points*...

It is *convenient* to express vectors in \mathbb{R}^n as matrices with *n* rows and *one column*:

$$v = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

Addition (parallelogram law) and Substraction

Addition: Is the one that commutes

Substraction: If you add v - w to w, you get v.

Scalar multiples of a vector:

have the same *direction* but a different *length*. The scalar multiples of \mathbf{v} *form a line*.

All multiples of v.

Example

Let
$$\mathbf{v} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 and $\mathbf{w} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

What are some linear combinations of v and w?

- $\blacktriangleright v + w$
- ► v w
- ► 2v + 0w
- ► 2w
- ► -v

Let A be an $m \times n$ matrix

$$A = \begin{pmatrix} | & | & | \\ v_1 & v_2 & \cdots & v_n \\ | & | & | \end{pmatrix} \quad \text{with columns } v_1, v_2, \dots, v_n$$

Definition The product of A with a vector x in \mathbb{R}^n is the linear combination $Ax = \begin{pmatrix} | & | & | \\ v_1 & v_2 & \cdots & v_n \\ | & | & | \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \stackrel{\text{def}}{=} x_1v_1 + x_2v_2 + \cdots + x_nv_n.$

- Necessary: Number of columns of A equals number of rows of x.
- ▶ The output is a vector in **R**^{*m*}.

$Matrix \times Vector$

A row vector is a matrix with one row.

Dot product The product of a row vector of length *n* and a (column) vector of length *n* $\begin{pmatrix} a_1 & \cdots & a_n \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \stackrel{\text{def}}{=} a_1 x_1 + \cdots + a_n x_n.$ is a scalar!

If A is an $m \times n$ matrix with rows r_1, r_2, \ldots, r_m , and x is a vector in \mathbb{R}^n , then

$$Ax = \begin{pmatrix} -r_1 \\ -r_2 \\ \vdots \\ -r_m \end{pmatrix} x = \begin{pmatrix} r_1 x \\ r_2 x \\ \vdots \\ r_m x \end{pmatrix}$$

This is a vector in R^m.

Pictures of Span in R^2

Drawing a picture of Span $\{v_1, v_2, \ldots, v_p\}$ is the same as drawing a picture of all linear combinations of v_1, v_2, \ldots, v_p .

Definition

Let v_1, v_2, \ldots, v_p be vectors in \mathbb{R}^n . The **span** of v_1, v_2, \ldots, v_p is the collection of all linear combinations of v_1, v_2, \ldots, v_p , and is denoted Span $\{v_1, v_2, \ldots, v_p\}$. In symbols:

In other words:

- Span{ v_1, v_2, \ldots, v_p } is the subset spanned/generated by v_1, v_2, \ldots, v_p .
- it's exactly the collection of all b in \mathbb{R}^n such that the vector equation

 $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \cdots + x_p\mathbf{v}_p = \mathbf{b}$

is consistent i.e., has a solution (unknowns x_1, x_2, \ldots, x_p).

Poll

Pictures of Span in \mathbf{R}^3

Systems of Linear Equations

Systems of linear equations depend on the Span of a set of vectors!

Spans and Solutions to Equations Example 2

Is b contained in the span of the columns of A?

Spans and Solutions to Equations

Example 2, explained

Question Let $A = \begin{pmatrix} 2 & 1 \\ -1 & 0 \\ 1 & -1 \end{pmatrix}$. Does the equation $Ax = \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix}$ have a solution?

Answer: Let's check by solving the matrix equation using row reduction. The first step is to put the system into an augmented matrix.

$$\begin{pmatrix} 2 & 1 & | & 0 \\ -1 & 0 & | & 2 \\ 1 & -1 & | & 2 \end{pmatrix} \xrightarrow{\text{row reduce}} \begin{pmatrix} 1 & 0 & | & 0 \\ 0 & 1 & | & 0 \\ 0 & 0 & | & 1 \end{pmatrix}$$

The last equation is 0 = 1, so the system is *inconsistent*.

In other words, the matrix equation

$$\begin{pmatrix} 2 & 1 \\ -1 & 0 \\ 1 & -1 \end{pmatrix} x = \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix}$$

has no solution.

Spans and Solutions to Equations Example 3

Is b contained in the span of the columns of A?

Spans and Solutions to Equations

Example 3, explained

~

Question
Let
$$A = \begin{pmatrix} 2 & 1 \\ -1 & 0 \\ 1 & -1 \end{pmatrix}$$
. Does the equation $Ax = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$ have a solution?

Answer: Let's do this systematically using row reduction.

$$\begin{pmatrix} 2 & 1 & | & 1 \\ -1 & 0 & | & -1 \\ 1 & -1 & | & 2 \end{pmatrix} \xrightarrow{\text{row reduce}} \begin{pmatrix} 1 & 0 & | & 1 \\ 0 & 1 & | & -1 \\ 0 & 0 & | & 0 \end{pmatrix}$$

This gives us

$$x=1 \qquad y=-1.$$

This is consistent with the picture on the previous slide:

$$1\begin{pmatrix} 2\\-1\\1 \end{pmatrix} - 1\begin{pmatrix} 1\\0\\-1 \end{pmatrix} = \begin{pmatrix} 1\\-1\\2 \end{pmatrix} \quad \text{or} \quad A\begin{pmatrix} 1\\-1 \end{pmatrix} = \begin{pmatrix} 1\\-1\\2 \end{pmatrix}.$$

Linear Systems, Vector Equations, Matrix Equations,

Now have four equivalent ways of writing linear systems:

1. As a system of equations:

$$2x_1 + 3x_2 = 7 x_1 - x_2 = 5$$

2. As an *augmented matrix*:

$$\begin{pmatrix} 2 & 3 & | & 7 \\ 1 & -1 & | & 5 \end{pmatrix}$$

3. As a vector equation $(x_1v_1 + \cdots + x_nv_n = b)$:

$$x_1 \begin{pmatrix} 2 \\ 1 \end{pmatrix} + x_2 \begin{pmatrix} 3 \\ -1 \end{pmatrix} = \begin{pmatrix} 7 \\ 5 \end{pmatrix}$$

4. As a matrix equation (Ax = b):

$$\begin{pmatrix} 2 & 3 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 7 \\ 5 \end{pmatrix}$$

We will move back and forth freely between these over and over again.

When Solutions Always Exist

Equivalent means that, for any given list of vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p, \mathbf{b}$, *either all three* statements are true, *or all three* statements are false.

Theorem

Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p, \mathbf{b}$ be vectors in \mathbf{R}^n and x_1, x_2, \dots, x_p be scalars. The following are equivalent

- 1. A vector **b** is in the span of $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_p$.
- 2. The vector equation $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \cdots + x_p\mathbf{v}_p = \mathbf{b}$, has a solution.
- 3. The augmented matrix below corresponds to a consistent linear system

$$\begin{pmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_p & \mathbf{b} \end{pmatrix}.$$

Theorem

Let A be an $m \times n$ (non-augmented) matrix. The following are equivalent

- 1. Ax = b has a solution for all b in \mathbb{R}^m .
- 2. The span of the columns of A is all of \mathbb{R}^m .
- 3. A has a pivot *in each row*.

Why is (1) the same as (3)?

Look at reduced echelon forms of A.

► If A has a pivot in each row:

(1)	0	*	0	*)		(1)	0	*	0	*	*
0	1	*	0	*	and $(A \mid b)$	0	1	*	0	*	*
0/	0	0	1	*/	reduces to:	\ 0	0	0	1	*	×/

.

There's no *b* that makes it inconsistent, so there's *always a solution*.

If A doesn't have a pivot in each row:

 $\begin{pmatrix} 1 & 0 & \star & 0 & \star \\ 0 & 1 & \star & 0 & \star \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \quad \begin{array}{c|c} \text{and this can be} \\ \text{made} \\ \text{inconsistent:} \end{pmatrix} \begin{pmatrix} 1 & 0 & \star & 0 & \star & 0 \\ 0 & 1 & \star & 0 & \star & 0 \\ 0 & 0 & 0 & 0 & 0 & 16 \end{pmatrix}.$