Section 1.5

Solution Sets of Linear Systems

First Part Today

Describe and draw the solution set of $A x=b$, using spans and parametric vector solutions.

Recall: the solution set is the collection of all vectors x such that $A x=b$ is true.

Solution in Parametric vector form

Question

What is the solution set of $A x=0$, where $A=$

$$
\begin{aligned}
& \left(\begin{array}{rrrr}
1 & 2 & 0 & -1 \\
-2 & -3 & 4 & 5 \\
2 & 4 & 0 & -2
\end{array}\right) \quad \begin{array}{r}
\text { row reduce } \\
\text { mwmw }
\end{array}\left(\begin{array}{rrrr}
1 & 0 & -8 & -7 \\
0 & 1 & 4 & 3 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \underset{\text { muations }}{\text { equm }} \rightarrow\left\{\begin{array}{rl}
x_{1} & -8 x_{3}-7 x_{4}
\end{array}=0\right. \\
& \underset{\text { parametric form }}{\text { munnunun } \rightarrow}\left\{\begin{array}{l}
x_{1}=8 x_{3}+7 x_{4} \\
x_{2}=-4 x_{3}-3 x_{4} \\
x_{3}=x_{3} \\
x_{4}=r
\end{array}\right.
\end{aligned}
$$

Parametric Vector Form and Span

Let A be an $m \times n$ matrix. If the free variables in the equation $A x=b$ are $x_{i}, x_{j}, x_{k}, \ldots$

And the parametric vector form of the solution is

$$
x=b^{\prime}+x_{i} v_{i}+x_{j} v_{j}+x_{k} v_{k}+\cdots
$$

for some vectors $b^{\prime}, v_{i}, v_{j}, v_{k}, \ldots$ in \mathbf{R}^{n}, and any scalars $x_{i}, x_{j}, x_{k}, \ldots$
Then the solution set is

$$
b^{\prime}+\operatorname{Span}\left\{v_{i}, v_{j}, v_{k}, \ldots\right\}
$$

Homogeneous Example

Question

What is the solution set of $A x=0$, where

$$
A=\left(\begin{array}{ll}
1 & -3 \\
2 & -6
\end{array}\right) ?
$$

Answer: $x=x_{2}\binom{3}{1}$ for any x_{2} in \mathbf{R}. The solution set is $\operatorname{Span}\left\{\binom{3}{1}\right\}$.

Note: one free variable means the solution set is a line in $\mathbf{R}^{2}(2=\#$ variables = \# columns).

Inhomogeneous Example

Question

What is the solution set of $A x=b$, where

$$
A=\left(\begin{array}{ll}
1 & -3 \\
2 & -6
\end{array}\right) \quad \text { and } \quad b=\binom{-3}{-6} ?
$$

Answer: $x=x_{2}\binom{3}{1}+\binom{-3}{0}$ for any x_{2} in \mathbf{R}.
This is a translate of Span $\left\{\binom{3}{1}\right\}$: it is the parallel line through $p=\binom{-3}{0}$.

It can be written

$$
\operatorname{Span}\left\{\binom{3}{1}\right\}+\binom{-3}{0}
$$

Homogeneous Systems

Definition

A system of linear equations of the form $A x=0$ is called homogeneous.
A system of linear equations of the form $A x=b$ with $b \neq 0$ is called nonhomogeneous or inhomogeneous.

A homogeneous system always has the solution $x=0$. This is called the trivial solution. The nonzero solutions are called nontrivial.

Observation

$$
A x=0 \text { has a nontrivial solution }
$$

\Longleftrightarrow there is a free variable
$\Longleftrightarrow A$ has a column with no pivot.

Poll

Poll

How many solutions can there be to a homogeneous system with more equations than variables?
A. 0
B. 1
C. ∞

The trivial solution is always a solution to a homogeneous system, so answer A is impossible.

This matrix has only one solution to $A x=0$:

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)
$$

This matrix has infinitely many solutions to $A x=0$:

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right)
$$

Solutions for Homogeneous Systems

If u and v are solutions to $A x=0$, then so is every vector in $\operatorname{Span}\{u, v\}$. Why?

$$
\left\{\begin{array}{l}
A u=0 \\
A v=0
\end{array} \quad \Longrightarrow \quad A\left(c_{1} u+c_{2} v\right)=c_{1} A u+c_{2} A v=c_{1} 0+c_{2} 0=0\right.
$$

(Here 0 means the zero vector.)
Important
The set of solutions to $A x=0$ is a span.

Solutions for Consistent Nonhomogeneous Systems

When consistent

The set of solutions to $A x=b$, is parallel to a span.

Solutions are obtained by taking one particular solution p to $A x=b$, and adding all solutions to $A x=0$.

Why? If $A p=b$ and $A x=0$, then $p+x$ is also a solution to $A x=b$:

$$
A(p+x)=A p+A x=b+0=b
$$

Note:
Works for any specific solution p: it doesn't matter how one found it!

An homogeneous System

Examples

Question

What is the solution set of $A x=0$, where

$$
A=\left(\begin{array}{ccc}
1 & 3 & 1 \\
2 & -1 & -5 \\
1 & 0 & -2
\end{array}\right) ?
$$

Answer: $\operatorname{Span}\left\{\left(\begin{array}{c}2 \\ -1 \\ 1\end{array}\right)\right\}$.

Note: one free variable means the solution set is a line in $\mathbf{R}^{3}(3=\#$ variables = \# columns).

An homogeneous System

Example, explained

Question

What is the solution set of $A x=0$, where

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
1 & 3 & 1 \\
2 & -1 & -5 \\
1 & 0 & -2
\end{array}\right) ? \\
& \left(\begin{array}{ccc}
1 & 3 & 1 \\
2 & -1 & -5 \\
1 & 0 & -2
\end{array}\right) \quad \underset{\text { row reduce }}{\text { mum }}\left(\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right) \\
& \underset{\text { equations }}{\text { equm } \rightarrow}\left\{\begin{array}{rl}
x_{1} & -2 x_{3}
\end{array}=0\right. \\
& \underset{\text { parametric form }}{\text { mumunnun }}\left\{\begin{array}{l}
x_{1}=2 x_{3} \\
x_{2}=-x_{3} \\
x_{3}=x_{3}
\end{array}\right. \\
& \underset{\sim}{\text { parametric vector form }} \underset{m_{1}}{\text { munnumunnun }} \rightarrow\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=x_{3}\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right) \text {. }
\end{aligned}
$$

A Nonhomogeneous System

Examples

Question

What is the solution set of $A x=b$, where

$$
A=\left(\begin{array}{ccc}
1 & 3 & 1 \\
2 & -1 & -5 \\
1 & 0 & -2
\end{array}\right) \quad \text { and } \quad b=\left(\begin{array}{l}
-5 \\
-3 \\
-2
\end{array}\right) ?
$$

Answer: $\operatorname{Span}\left\{\left(\begin{array}{c}2 \\ -1 \\ 1\end{array}\right)\right\}+\left(\begin{array}{c}-2 \\ -1 \\ 0\end{array}\right)$.

The solution set is a translate of

$$
\operatorname{Span}\left\{\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right)\right\}
$$

it is the parallel line through

$$
p=\left(\begin{array}{c}
-2 \\
-1 \\
0
\end{array}\right)
$$

A Nonhomogeneous System

Example, explained

Question

What is the solution set of $A x=b$, where

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
1 & 3 & 1 \\
2 & -1 & -5 \\
1 & 0 & -2
\end{array}\right) \quad \text { and } \quad b=\left(\begin{array}{l}
-5 \\
-3 \\
-2
\end{array}\right) \text { ? } \\
& \left(\begin{array}{rrr|r}
1 & 3 & 1 & -5 \\
2 & -1 & -5 & -3 \\
1 & 0 & -2 & -2
\end{array}\right) \quad \stackrel{\text { row reduce }}{\text { rumani }}\left(\begin{array}{rrr|r}
1 & 0 & -2 & -2 \\
0 & 1 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \underset{\sim}{\text { parametric form }} \underset{\sim}{\text { mamminm }} \rightarrow \begin{array}{l}
x_{1}=2 x_{3}-2 \\
x_{2}=-x_{3}-1 \\
x_{3}=x_{3}
\end{array} \\
& \underset{\sim}{\text { parametric vector form }} \underset{\text { manmannum }}{\text { min }} \quad x=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=x_{3}\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right)+\left(\begin{array}{c}
-2 \\
-1 \\
0
\end{array}\right) \text {. }
\end{aligned}
$$

Second Part today

Review Section 1.6 with MyMathLab

