Announcements

Tuesday, January 23

Office Hours
Jun Tao Duan - Thursdays 4-6pm Clough 280
Scott Guan - Tuesdays 2-3pm Skiles 230
Sophia Dever - Tuesdays 4-5pm Clough Math Lab

Math is fun!

Undergrads can apply for TAing in the math department:
http://www.math.gatech.edu/undergraduate-ta

Section 1.9 (\& 1.8)

The Matrix of a Linear Transformation

Unit Coordinate Vectors

Definition
The unit coordinate vectors in \mathbf{R}^{n} are

This is what e_{1}, e_{2}, \ldots mean, for the rest of the class.

$$
e_{1}=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right), \quad e_{2}=\left(\begin{array}{c}
0 \\
1 \\
\vdots \\
0 \\
0
\end{array}\right), \quad \ldots, \quad e_{n-1}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
1 \\
0
\end{array}\right), \quad e_{n}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right) .
$$

Unit Coordinate Vectors

Definition
The unit coordinate vectors in \mathbf{R}^{n} are

This is what e_{1}, e_{2}, \ldots mean, for the rest of the class.

$$
e_{1}=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right), \quad e_{2}=\left(\begin{array}{c}
0 \\
1 \\
\vdots \\
0 \\
0
\end{array}\right), \quad \ldots, \quad e_{n-1}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
1 \\
0
\end{array}\right), \quad e_{n}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right) .
$$

Important: if A is an $m \times n$ matrix with columns $v_{1}, v_{2}, \ldots, v_{n}$, then $A e_{i}=v_{i}$ for $i=1,2, \ldots, n$: the transformation $T(x)=A x$ sends e_{i} to vector v_{i}.

Linear Transformations are Matrix Transformations

Theorem
Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a linear transformation. Let

$$
A=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
T\left(e_{1}\right) & T\left(e_{2}\right) & \cdots & T\left(e_{n}\right) \\
\mid & \mid & & \mid
\end{array}\right) .
$$

This is an \qquad matrix,

Linear Transformations are Matrix Transformations

Theorem

Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a linear transformation. Let

$$
A=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
T\left(e_{1}\right) & T\left(e_{2}\right) & \cdots & T\left(e_{n}\right) \\
\mid & \mid & & \mid
\end{array}\right) .
$$

This is an $m \times n$ matrix, and T is the matrix transformation for $A: T(x)=A x$.
The matrix A is called the standard matrix for T.

Take-Away

A linear transformation may not be given a priori as a matrix transformation but linear transformations are the same as matrix transformations.

Matrix Transformations

Projection

$$
\text { Let } A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \text { and let } T(x)=A x \text {, so } T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3} \text {. Then }
$$

$$
T\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
x \\
y \\
0
\end{array}\right)
$$

Matrix Transformations

Projection

Let $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ and let $T(x)=A x$, so $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$. Then

$$
T\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
x \\
y \\
0
\end{array}\right) .
$$

This is projection onto the $x y$-axis. Picture:

Matrix Transformations

Reflection

Let $A=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$ and let $T(x)=A x$, so $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$. Then

$$
T\binom{x}{y}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\binom{x}{y}=\binom{-x}{y}
$$

Matrix Transformations
Reflection

$$
\text { Let } A=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \text { and let } T(x)=A x \text {, so } T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2} \text {. Then }
$$

$$
T\binom{x}{y}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\binom{x}{y}=\binom{-x}{y}
$$

This is reflection over the y-axis. Picture:

Linear Transformations

Define $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ by $T\binom{x}{y}=\binom{-y}{x}$. Is T linear?

This is called rotation (by 90°). Picture:

$$
T\binom{1}{2}=\binom{-2}{1}
$$

Linear Transformations

Define $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ by $T\binom{x}{y}=\binom{-y}{x}$. Is T linear?

This is called rotation (by 90°). Picture:

$$
\begin{aligned}
T\binom{1}{2} & =\binom{-2}{1} \\
T\binom{-1}{1} & =\binom{-1}{-1}
\end{aligned}
$$

Linear Transformations

Define $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ by $T\binom{x}{y}=\binom{-y}{x}$. Is T linear?

This is called rotation (by 90°). Picture:

$$
\begin{aligned}
T\binom{1}{2} & =\binom{-2}{1} \\
T\binom{-1}{1} & =\binom{-1}{-1} \\
T\binom{0}{-2} & =\binom{2}{0}
\end{aligned}
$$

Linear Transformations: Rotation

Question

What is the matrix for the linear transformation $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ defined by

$$
T(x)=x \text { rotated counterclockwise by an angle } \theta \text { ? }
$$

Linear Transformations: Reflexion/Projection

Question

What is the matrix for the linear transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ that reflects through the $x y$-plane and then projects onto the $y z$-plane?

Linear Transformations: Reflexion/Projection

Construction Phase 1

Question

What is the matrix for the linear transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ that reflects through the $x y$-plane and then projects onto the $y z$-plane?

Linear Transformations: Reflexion/Projection

Construction Phase 1

Question

What is the matrix for the linear transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ that reflects through the $x y$-plane and then projects onto the $y z$-plane?

Linear Transformations: Reflexion/Projection

Construction Phase 1

Question

What is the matrix for the linear transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ that reflects through the $x y$-plane and then projects onto the $y z$-plane?

Linear Transformations: Reflexion/Projection

Construction Phase 1

Question

What is the matrix for the linear transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ that reflects through the $x y$-plane and then projects onto the $y z$-plane?

$$
T\left(e_{1}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

Linear Transformations: Reflexion/Projection

Construction Phase 2

Question

What is the matrix for the linear transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ that reflects through the $x y$-plane and then projects onto the $y z$-plane?

Linear Transformations: Reflexion/Projection

Construction Phase 2

Question

What is the matrix for the linear transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ that reflects through the $x y$-plane and then projects onto the $y z$-plane?

Linear Transformations: Reflexion/Projection

Construction Phase 2

Question

What is the matrix for the linear transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ that reflects through the $x y$-plane and then projects onto the $y z$-plane?

Linear Transformations: Reflexion/Projection

Construction Phase 2

Question

What is the matrix for the linear transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ that reflects through the $x y$-plane and then projects onto the $y z$-plane?

$$
T\left(e_{2}\right)=e_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \text {. }
$$

Linear Transformations: Reflexion/Projection

Construction Phase 3

Question

What is the matrix for the linear transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ that reflects through the $x y$-plane and then projects onto the $y z$-plane?

Linear Transformations: Reflexion/Projection

Construction Phase 3

Question

What is the matrix for the linear transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ that reflects through the $x y$-plane and then projects onto the $y z$-plane?

Linear Transformations: Reflexion/Projection

Construction Phase 3

Question

What is the matrix for the linear transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ that reflects through the $x y$-plane and then projects onto the $y z$-plane?

Linear Transformations: Reflexion/Projection

Construction Phase 3

Question

What is the matrix for the linear transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ that reflects through the $x y$-plane and then projects onto the $y z$-plane?

$$
T\left(e_{3}\right)=\left(\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right) .
$$

Linear Transformations: Reflexion/Projection

Question

What is the matrix for the linear transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ that reflects through the $x y$-plane and then projects onto the $y z$-plane?

$$
\left.\begin{array}{l}
T\left(e_{1}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
T\left(e_{2}\right)=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \\
T\left(e_{1}\right)=\left(\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right)
\end{array}\right\} \Longrightarrow A=
$$

Linear Transformations: Reflexion/Projection

Question

What is the matrix for the linear transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ that reflects through the $x y$-plane and then projects onto the $y z$-plane?

$$
\left.\begin{array}{l}
T\left(e_{1}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
T\left(e_{2}\right)=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \\
T\left(e_{1}\right)=\left(\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right)
\end{array}\right\} \Longrightarrow A=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right) .
$$

Transformations

Definition

A transformation (or function or map) from \mathbf{R}^{n} to \mathbf{R}^{m} is a rule T that assigns to each vector x in \mathbf{R}^{n} a vector $T(x)$ in \mathbf{R}^{m}.

Notation:
$T: \mathbf{R}^{n} \longrightarrow \mathbf{R}^{m}$ means T is a transformation from \mathbf{R}^{n} to \mathbf{R}^{m}.

Transformations

Definition

A transformation (or function or map) from \mathbf{R}^{n} to \mathbf{R}^{m} is a rule T that assigns to each vector x in \mathbf{R}^{n} a vector $T(x)$ in \mathbf{R}^{m}.

Notation:

$T: \mathbf{R}^{n} \longrightarrow \mathbf{R}^{m} \quad$ means $\quad T$ is a transformation from \mathbf{R}^{n} to \mathbf{R}^{m}.

Linear Transformations

Recall: If A is a matrix, u, v are vectors, and c is a scalar, then

$$
A(u+v)=A u+A v \quad A(c v)=c A v
$$

So if $T(x)=A x$ is a matrix transformation then,

$$
T(u+v)=T(u)+T(v) \quad \text { and } \quad T(c u)=c T(u)
$$

Definition

A transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is linear if it satisfies the above equations for all vectors u, v in \mathbf{R}^{n} and all scalars c.

Linear Transformations

Recall: If A is a matrix, u, v are vectors, and c is a scalar, then

$$
A(u+v)=A u+A v \quad A(c v)=c A v
$$

So if $T(x)=A x$ is a matrix transformation then,

$$
T(u+v)=T(u)+T(v) \quad \text { and } \quad T(c u)=c T(u)
$$

Definition

A transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is linear if it satisfies the above equations for all vectors u, v in \mathbf{R}^{n} and all scalars c.
In other words, T "respects" addition and scalar multiplication.

Onto Transformations

Definition
A transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is onto (or surjective) if the range of T is equal to \mathbf{R}^{m} (its codomain). In other words, each b in \mathbf{R}^{m} is the image of at least one x in \mathbf{R}^{n} :

Characterization of Onto Transformations

Theorem
Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a linear transformation with matrix A. Then the following are equivalent:

- T is onto

Characterization of Onto Transformations

Theorem
Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a linear transformation with matrix A. Then the following are equivalent:

- T is onto
- $T(x)=b$ has a solution for every b in \mathbf{R}^{m}
- $A x=b$ is consistent for every b in \mathbf{R}^{m}
- A has a pivot in every row
- The columns of A span \mathbf{R}^{m}

One-to-one Transformations

Definition

A transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is one-to-one (or into, or injective) if different vectors in \mathbf{R}^{n} map to different vectors in \mathbf{R}^{m}.

One-to-one Transformations

Definition
A transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is one-to-one (or into, or injective) if different vectors in \mathbf{R}^{n} map to different vectors in \mathbf{R}^{m}. In other words, each b in \mathbf{R}^{m} is the image of at most one x in \mathbf{R}^{n} :

Characterization of One-to-One Transformations

Theorem
Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a linear transformation with matrix A. Then the following are equivalent:

- T is one-to-one

Characterization of One-to-One Transformations

Theorem
Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a linear transformation with matrix A. Then the following are equivalent:

- T is one-to-one
- $T(x)=b$ has one or zero solutions for every b in \mathbf{R}^{m}
- $A x=b$ has a unique solution or is inconsistent for every b in \mathbf{R}^{m}
- $A x=0$ has a unique solution
- A has a pivot in every \qquad .

