Announcements

Tuesday, January 23

Office Hours

Jun Tao Duan - Thursdays 4-6pm Scott Guan - Tuesdays 2-3pm Sophia Dever - Tuesdays 4-5pm Clough 280 Skiles 230 Clough Math Lab

Math is fun!

Undergrads can apply for TAing in the math department:

http://www.math.gatech.edu/undergraduate-ta

Section 1.9 (& 1.8)

The Matrix of a Linear Transformation

Unit Coordinate Vectors

Unit Coordinate Vectors

Important: if A is an $m \times n$ matrix with columns v_1, v_2, \ldots, v_n , then $Ae_i = v_i$ for $i = 1, 2, \ldots, n$: the transformation T(x) = Ax sends e_i to vector v_i .

Theorem

Let $T: \mathbf{R}^n \to \mathbf{R}^m$ be a linear transformation. Let

$$A = \begin{pmatrix} | & | & | \\ T(e_1) & T(e_2) & \cdots & T(e_n) \\ | & | & | \end{pmatrix}.$$

This is an matrix,

Theorem

Let $T: \mathbf{R}^n \to \mathbf{R}^m$ be a linear transformation. Let

$$A = \begin{pmatrix} | & | & | \\ T(e_1) & T(e_2) & \cdots & T(e_n) \\ | & | & | \end{pmatrix}.$$

This is an $m \times n$ matrix, and T is the matrix transformation for A: T(x) = Ax. The matrix A is called the *standard matrix for* T.

Matrix Transformations

Projection

Let
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T : \mathbf{R}^3 \to \mathbf{R}^3$. Then
$$T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}.$$

Matrix Transformations

Projection

Let
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T : \mathbf{R}^3 \to \mathbf{R}^3$. Then
$$T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}.$$

This is *projection onto the xy-axis*. Picture:

Matrix Transformations

Reflection

Let
$$A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T : \mathbf{R}^2 \to \mathbf{R}^2$. Then
 $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ y \end{pmatrix}$.

Matrix Transformations Reflection

Let
$$A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T : \mathbf{R}^2 \to \mathbf{R}^2$. Then
 $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ y \end{pmatrix}$.

This is *reflection over the y-axis*. Picture:

Linear Transformations Rotation

Define
$$T: \mathbf{R}^2 \to \mathbf{R}^2$$
 by $T\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} -y\\ x \end{pmatrix}$. Is T linear?

This is called **rotation** (by 90°). Picture:

$$T\begin{pmatrix}1\\2\end{pmatrix} = \begin{pmatrix}-2\\1\end{pmatrix}$$

Linear Transformations Rotation

Define
$$T: \mathbf{R}^2 \to \mathbf{R}^2$$
 by $T\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} -y\\ x \end{pmatrix}$. Is T linear?

This is called rotation (by 90°). Picture:

$$T\begin{pmatrix}1\\2\end{pmatrix} = \begin{pmatrix}-2\\1\end{pmatrix}$$
$$T\begin{pmatrix}-1\\1\end{pmatrix} = \begin{pmatrix}-1\\-1\end{pmatrix}$$

Linear Transformations Rotation

Define
$$T: \mathbf{R}^2 \to \mathbf{R}^2$$
 by $T\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} -y\\ x \end{pmatrix}$. Is T linear?

This is called **rotation** (by 90°). Picture:

$$T\begin{pmatrix}1\\2\end{pmatrix} = \begin{pmatrix}-2\\1\end{pmatrix}$$
$$T\begin{pmatrix}-1\\1\end{pmatrix} = \begin{pmatrix}-1\\-1\end{pmatrix}$$
$$T\begin{pmatrix}0\\-2\end{pmatrix} = \begin{pmatrix}2\\0\end{pmatrix}$$

Linear Transformations: Rotation

Question

What is the matrix for the linear transformation $\mathcal{T}\colon \mathbf{R}^2 o \mathbf{R}^2$ defined by

T(x) = x rotated counterclockwise by an angle θ ?

Construction Phase 1

Question

Construction Phase 1

Question

Construction Phase 1

Question

Construction Phase 1

Question

Construction Phase 1

Question

Construction Phase 2

Question

Construction Phase 3

Question

Resulting matrix

Question

$$T(e_1) = \begin{pmatrix} 0\\0\\0 \end{pmatrix}$$

$$T(e_2) = \begin{pmatrix} 0\\1\\0 \end{pmatrix}$$

$$T(e_1) = \begin{pmatrix} 0\\0\\-1 \end{pmatrix}$$

Resulting matrix

Question

$$T(e_{1}) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$T(e_{2}) = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

$$\implies A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

$$T(e_{1}) = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}$$

Transformations

Definition

A transformation (or function or map) from \mathbb{R}^n to \mathbb{R}^m is a rule T that assigns to each vector x in \mathbb{R}^n a vector T(x) in \mathbb{R}^m .

Notation:

Transformations

Definition

A transformation (or function or map) from \mathbb{R}^n to \mathbb{R}^m is a rule T that assigns to each vector x in \mathbb{R}^n a vector T(x) in \mathbb{R}^m .

Notation:

Linear Transformations

Recall: If A is a matrix, u, v are vectors, and c is a scalar, then $A(u+v) = Au + Av \qquad A(cv) = cAv.$ So if T(x) = Ax is a matrix transformation then, $T(u+v) = T(u) + T(v) \quad \text{and} \quad T(cu) = cT(u)$

Definition

A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is linear if it satisfies the above equations for all vectors u, v in \mathbb{R}^n and all scalars c.

Linear Transformations

Recall: If A is a matrix, u, v are vectors, and c is a scalar, then $A(u+v) = Au + Av \qquad A(cv) = cAv.$ So if T(x) = Ax is a matrix transformation then, $T(u+v) = T(u) + T(v) \quad \text{and} \quad T(cu) = cT(u)$

Definition

A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is linear if it satisfies the above equations for all vectors u, v in \mathbb{R}^n and all scalars c.

In other words, *T* "respects" addition and scalar multiplication.

Onto Transformations

Definition

A transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is **onto** (or **surjective**) if the range of T is equal to \mathbb{R}^m (its codomain). In other words, each b in \mathbb{R}^m is the image of at least one x in \mathbb{R}^n :

Characterization of Onto Transformations

Theorem

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation with matrix A. Then the following are equivalent:

► T is onto

Theorem

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation with matrix A. Then the following are equivalent:

- ► T is onto
- T(x) = b has a solution for every b in \mathbf{R}^m
- Ax = b is consistent for every b in \mathbf{R}^m
- A has a pivot in every row
- ▶ The columns of A span R^m

One-to-one Transformations

Definition

A transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one (or into, or injective) if different vectors in \mathbb{R}^n map to different vectors in \mathbb{R}^m .

One-to-one Transformations

Definition

A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is **one-to-one** (or **into**, or **injective**) if *different* vectors in \mathbb{R}^n map to different vectors in \mathbb{R}^m . In other words, each b in \mathbb{R}^m is the image of at most one x in \mathbb{R}^n :

Characterization of One-to-One Transformations

Theorem

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation with matrix A. Then the following are equivalent:

► T is one-to-one

Theorem

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation with matrix A. Then the following are equivalent:

- ► T is one-to-one
- T(x) = b has one or zero solutions for every b in \mathbf{R}^m
- Ax = b has a *unique solution or is inconsistent* for every b in \mathbb{R}^m
- Ax = 0 has a unique solution
- A has a pivot in every _____.