Sections 1.6 & 1.10

Applications and linear Models

Linearity...

- Reflects some property of the system being modeled
- Easily adapted for computer *calculations*
- Approximate phenomena when parameters are held within some boundaries e.g. derivatives are used as *linear approximations*

Zero-sum systems: Traffic flows and Electrical Networks

Zero-sum property of *flows in/out* around every node.

Constraints: If the flow directions are mandatory (as traffic lanes) then their values must remain non-negative.

Zero-sum systems: Electrical Networks

- Zero-sum property of voltages drops/sources around every loop.
- The resulting currents I_i for each loop satisfy the traffic flow properties!

Linear combinations: Constructing a Weight/L/055 Nutritious Diet

Or for any system of balanced/reliable supplies from different distributors.

Amounts (g) Su	pplied per 100 g	Amounts (g) Supplied by		
Nutrient	Nonfat milk	Soy flour	Whey	Cambridge Diet in One Day
Protein	36	51	13	33
Carbohydrate	52	34	74	45
Fat	0	7	1.1	3

 Constraints: The vector of weights for each product/distributor has to be non-negative to make sense in its context.

Linear combinations: Economy equilibrium prices

- Equilibrium prices can be assigned to the total outputs of the various sectors in such a way that the income of each sector balances its expenses
- *Constraints:* The prices have to be positive to make sense in this context.

Distribution of Output from:					
Coal	Electric	Steel	Purchased by:		
.0	.4	.6	Coal		
.6	.1	.2	Electric		
.4	.5	.2	Steel		

Difference equations: Population migration

This is a **difference equation**: $Ax_n = x_{n+1}$

Annual percentage migration between city and suburbs.

If you know *initial population* x_0 , what happens *in 10 years* x_{10} ?

Difference equations: Population growth

How to predict a population of rabbits with given dynamics:

- 1. half of the newborn rabbits *survive* their first year;
- 2. of those, half *survive* their second year;
- 3. their maximum *life span* is three years;
- 4. Each rabbit gets 0, 6, 8 *baby rabbits* in their three years, respectively.

Approach: Each year, count the population by age:

$$v_n = \begin{pmatrix} f_n \\ s_n \\ t_n \end{pmatrix}$$
 where $\begin{cases} f_n = \text{first-year rabbits in year } n \\ s_n = \text{second-year rabbits in year } n \\ t_n = \text{third-year rabbits in year } n \end{cases}$

The dynamics say:

$$\overbrace{\begin{pmatrix} f_{n+1} \\ s_{n+1} \\ t_{n+1} \end{pmatrix}}^{v_{n+1}} = \begin{pmatrix} 6s_n + 8t_n \\ f_n/2 \\ s_n/2 \end{pmatrix} = \overbrace{\begin{pmatrix} 0 & 6 & 8 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \end{pmatrix}}^{Av_n} \begin{pmatrix} f_n \\ s_n \\ t_n \end{pmatrix}.$$

Plug in a computer:

<i>V</i> 0	<i>V</i> 10	V 11
$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$	(9459) 2434 577)	$\begin{pmatrix} 19222 \\ 4729 \\ 1217 \end{pmatrix}$
$\begin{pmatrix} 3 \\ 7 \\ 9 \end{pmatrix}$	$\begin{pmatrix} 30189\\7761\\1844 \end{pmatrix}$	$\begin{pmatrix} 61316 \\ 15095 \\ 3881 \end{pmatrix}$
$\begin{pmatrix} 16\\4\\1 \end{pmatrix}$	$\begin{pmatrix}16384\\4096\\1024\end{pmatrix}$	$\begin{pmatrix} 32768\\8192\\2048 \end{pmatrix}$

Notice any patterns?

- 1. Each segment of the population *essentially doubles* every year: $Av_{11} \approx 2v_{10}$.
- 2. The ratios get close to (16:4:1):

$$v_{11} \approx (big \#) \cdot \begin{pmatrix} 16 \\ 4 \\ 1 \end{pmatrix}.$$

New terms coming (after midterm 1): eigenvalue, and eigenvector