Sections 1.6 \& 1.10

Applications and linear Models

Linearity...

- Reflects some property of the system being modeled
- Easily adapted for computer calculations
- Approximate phenomena when parameters are held within some boundaries e.g. derivatives are used as linear approximations

Zero-sum systems: Traffic flows and Electrical Networks

- Zero-sum property of flows in/out around every node.

- Constraints: If the flow directions are mandatory (as traffic lanes) then their values must remain non-negative.

Zero-sum systems: Electrical Networks

- Zero-sum property of voltages drops/sources around every loop.
- The resulting currents I_{i} for each loop satisfy the traffic flow properties!

Linear combinations: Constructing a W\&ildhtt-L|H\$\$ Nutritious Diet

Or for any system of balanced/reliable supplies from different distributors.

Amounts (g) Supplied per $\mathbf{1 0 0} \mathbf{g}$ of Ingredient					Amounts (g) Supplied by Cambridge Diet in One Day	
Nutrient	Nonfat milk	Soy flour	Whey		33	
Protein	36	51	13	45		
Carbohydrate	52	34	74	3		
Fat	0	7	1.1			

- Constraints: The vector of weights for each product/distributor has to be non-negative to make sense in its context.

Linear combinations: Economy equilibrium prices

- Equilibrium prices can be assigned to the total outputs of the various sectors in such a way that the income of each sector balances its expenses
- Constraints: The prices have to be positive to make sense in this context.

Distribution of Output from:

Coal	Electric	Steel	Purchased by:
.0	.4	.6	Coal
.6	.1	.2	Electric
.4	.5	.2	Steel

Difference equations: Population migration

This is a difference equation: $A x_{n}=x_{n+1}$

Annual percentage migration between city and suburbs.
From:
City Suburbs To:

$$
\left[\begin{array}{ll}
.95 & .03 \\
.05 & .97
\end{array}\right] \quad \begin{aligned}
& \text { City } \\
& \text { Suburbs }
\end{aligned}
$$

If you know initial population x_{0}, what happens in 10 years x_{10} ?

Difference equations: Population growth

How to predict a population of rabbits with given dynamics:

1. half of the newborn rabbits survive their first year;
2. of those, half survive their second year;
3. their maximum life span is three years;
4. Each rabbit gets $0,6,8$ baby rabbits in their three years, respectively.

Approach: Each year, count the population by age:

$$
v_{n}=\left(\begin{array}{c}
f_{n} \\
s_{n} \\
t_{n}
\end{array}\right) \text { where } \begin{cases}f_{n} & =\text { first-year rabbits in year } n \\
s_{n} & =\text { second-year rabbits in year } n \\
t_{n} & =\text { third-year rabbits in year } n\end{cases}
$$

The dynamics say:

$$
\overbrace{\left(\begin{array}{c}
f_{n+1} \\
s_{n+1} \\
t_{n+1}
\end{array}\right)}^{v_{n+1}}=\left(\begin{array}{c}
6 s_{n}+8 t_{n} \\
f_{n} / 2 \\
s_{n} / 2
\end{array}\right)=\overbrace{\left(\begin{array}{ccc}
0 & 6 & 8 \\
\frac{1}{2} & 0 & 0 \\
0 & \frac{1}{2} & 0
\end{array}\right)\left(\begin{array}{c}
f_{n} \\
s_{n} \\
t_{n}
\end{array}\right)}^{A v_{n}}
$$

Difference equations: Population growth

Plug in a computer:

v_{0}	v_{10}	v_{11}
$\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$	$\left(\begin{array}{l}9459 \\ 2434 \\ 577\end{array}\right)$	$\left(\begin{array}{c}19222 \\ 4729 \\ 1217\end{array}\right)$
$\left(\begin{array}{l}3 \\ 7 \\ 9\end{array}\right)$	$\left(\begin{array}{c}30189 \\ 7761 \\ 1844\end{array}\right)$	$\left(\begin{array}{c}61316 \\ 15095 \\ 3881\end{array}\right)$
$\left(\begin{array}{c}16 \\ 4 \\ 1\end{array}\right)$	$\left(\begin{array}{c}16384 \\ 4096 \\ 1024\end{array}\right)$	$\left(\begin{array}{c}32768 \\ 8192 \\ 2048\end{array}\right)$

Notice any patterns?

1. Each segment of the population essentially doubles every year: $A v_{11} \approx 2 v_{10}$.
2. The ratios get close to (16:4:1):

$$
v_{11} \approx(\operatorname{big} \#) \cdot\left(\begin{array}{c}
16 \\
4 \\
1
\end{array}\right)
$$

New terms coming (after midterm 1): eigenvalue, and eigenvector

