
Sections 1.6 & 1.10

Applications and linear Models



Linearity...

I Reflects some property of the system being modeled

I Easily adapted for computer calculations

I Approximate phenomena when parameters are held within some boundaries

e.g. derivatives are used as linear approximations



Zero-sum systems: Tra�c flows and Electrical Networks

I Zero-sum property of flows in/out around every node.

I Constraints: If the flow directions are mandatory (as tra�c lanes) then
their values must remain non-negative.



Zero-sum systems: Electrical Networks

I Zero-sum property of voltages drops/sources around every loop.

I The resulting currents Ii for each loop satisfy the tra�c flow properties!



Linear combinations: Constructing a //////////////Weight-Loss Nutritious Diet

Or for any system of balanced/reliable supplies from di↵erent distributors.

I Constraints: The vector of weights for each product/distributor has to be
non-negative to make sense in its context.



Linear combinations: Economy equilibrium prices

I Equilibrium prices can be assigned to the total outputs of the various
sectors in such a way that the income of each sector balances its expenses

I Constraints: The prices have to be positive to make sense in this context.



Di↵erence equations: Population migration

This is a di↵erence equation: Axn = xn+1

If you know initial population x0, what happens in 10 years x10?



Di↵erence equations: Population growth

How to predict a population of rabbits with given dynamics:

1. half of the newborn rabbits survive their first year;

2. of those, half survive their second year;

3. their maximum life span is three years;

4. Each rabbit gets 0, 6, 8 baby rabbits in their three years, respectively.

Approach: Each year, count the population by age:
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fn = first-year rabbits in year n

sn = second-year rabbits in year n

tn = third-year rabbits in year n

The dynamics say:
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Di↵erence equations: Population growth
Continued

Plug in a computer:
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Notice any patterns?

1. Each segment of the
population essentially doubles
every year: Av11 ⇡ 2v10.

2. The ratios get close to
(16 : 4 : 1):
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New terms coming (after midterm 1): eigenvalue, and eigenvector


