Announcements

Tuesday, January 30

- Quizzes will be handed back in recitation
- Solution to quizzes can be found in the calendar:
http:
//people.math.gatech.edu/~leslava3/1718S-2802/schedule.html
- Diversity and Inclusion Project: Accent stories

$$
\begin{gathered}
\text { http://www.diversity.gatech.edu/DIFellowsProgram/ } \\
\text { 2017ProjectSpotlights/ }
\end{gathered}
$$

Towards a 'flipped classroom':

- Homework and quizzes cover the material from same week
- Don't wait until lecture to start learning the material

Sections 1.7, 2.2,2.3

Invertibility: Criterions and and algorithm

Motivation

We can turn any system of linear equations into a matrix equation

$$
A x=b
$$

This notation is suggestive. Can we solve the equation by "dividing by A"?

$$
x \stackrel{? ?}{=} \frac{b}{A}
$$

Answer: Only sometimes.
Today: Invertibility: "dividing" by a matrix = multiplying by the inverse
So when does the inverse of a matrix exists?

The Definition of Inverse

Definition

Let A be an $n \times n$ square matrix. We say A is invertible (or nonsingular) if there is a matrix B of the same size, such that
identity matrix

$$
A B=I_{n} \quad \text { and } \quad B A=I_{n} . \longleftrightarrow\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right)
$$

Example

$$
A=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right) \quad B=\left(\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right)
$$

Wild guess: $B=A^{-1}$. Check:

$$
\begin{aligned}
A B & =\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
B A & =\left(\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right)\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Composition of Transformations

Definition

Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ and $U: \mathbf{R}^{p} \rightarrow \mathbf{R}^{n}$ be transformations. The composition is the transformation

$$
T \circ U: \mathbf{R}^{p} \rightarrow \mathbf{R}^{m} \quad \text { defined by } \quad T \circ U(x)=T(U(x))
$$

A transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is invertible if there exists $U: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ such that for all x in \mathbf{R}^{n}

$$
T \circ U(x)=x \quad \text { and } \quad U \circ T(x)=x
$$

In this case we say U is the inverse of T, and we write $U=T^{-1}$. In other words, $T(U(x))=x$, so T "undoes" U, and likewise U "undoes" T.

Invertible Transformations

Fact

A transformation T is invertible if and only if it is both one-to-one and onto.

This means for every y in \mathbf{R}^{n}, there is a unique x in \mathbf{R}^{n} such that $T(x)=y$.
Therefore we can define $T^{-1}(y)=x$.
Important

- The matrix of the composition is the product of the matrices!
- The product of invertible matrices is invertible: The inverse is the product of the inverses, in the reverse order.

Caveats of Matrix Multiplication

Beware: matrix multiplication is very subtle:

- $A B$ is usually not equal to $B A$.

$$
\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
2 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
0 & -1 \\
2 & 0
\end{array}\right) \quad\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & -2 \\
1 & 0
\end{array}\right)
$$

In fact, $A B$ may be defined when $B A$ is not.

- No cancellation: $A B=A C$ does not imply $B=C$, even if $A \neq 0$.

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
5 & 6
\end{array}\right)
$$

- Not necessarily zero matrices: $A B=0$ does not imply $A=0$ or $B=0$.

$$
\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

Invertible Transformations

Examples
Let $T=$ counterclockwise rotation in the plane by 45°. What is T^{-1} ?

T^{-1} is clockwise rotation by 45°.
Let $T=$ shrinking by a factor of $2 / 3$ in the plane. What is T^{-1} ?

T^{-1} is stretching by $3 / 2$.
How to find the inverse of a matrix in general?

Composition of Linear Transformations

Example

Question

What is the matrix for the linear transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ that reflects through the $x y$-plane and then projects onto the $y z$-plane?

1. U_{1} reflects through the $x y$-plane:
2. U_{2} projects ono the $y z$-plane:
3. $T=U_{2} \circ U_{1}$:

$$
\begin{aligned}
A_{1} & =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right) \\
A_{2} & =\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
B=A_{2} A_{1}= & \left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
\end{aligned}
$$

Elementary Matrices

Definition

An elementary matrix is a matrix E that differs from I_{n} by one row operation.
There are three kinds, corresponding to the three elementary row operations:

$$
\begin{array}{ccc}
\begin{array}{c}
\text { scaling } \\
\left(R_{2}=2 R_{2}\right)
\end{array} & \begin{array}{c}
\text { row replacement } \\
\left(R_{2}=R_{2}+2 R_{1}\right)
\end{array} & \left(R_{1} \stackrel{\text { swap }}{\longleftrightarrow} R_{2}\right) \\
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right) & \left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) & \left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{array}
$$

Important Fact: For any $n \times n$ matrix A, if E is the elementary matrix for a row operation, then $E A$ differs from A by the same row operation.
Example:

$$
\begin{aligned}
& \left(\begin{array}{ccc}
1 & 0 & 4 \\
0 & 1 & 2 \\
0 & -3 & -4
\end{array}\right) \stackrel{R_{2}=R_{2}+2 R_{1}}{2} \rightarrow\left(\begin{array}{rrr}
1 & 0 & 4 \\
2 & 1 & 10 \\
0 & -3 & -4
\end{array}\right) \\
& \left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 4 \\
0 & 1 & 2 \\
0 & -3 & -4
\end{array}\right)=\left(\begin{array}{rrr}
1 & 0 & 4 \\
2 & 1 & 10 \\
0 & -3 & -4
\end{array}\right)
\end{aligned}
$$

Poll

Elementary matrices are invertible. The inverse is the elementary matrix which un-does the row operation.

Poll

Let E be the 3×3 matrix corresponding to adding 2 times row 3 to row 2. Mark E^{-1} from the list below
a) $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 / 2 & 1\end{array}\right)$
b) $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & -1\end{array}\right)$
c) $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1\end{array}\right)$
d) $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & -1 / 2 \\ 0 & 0 & 1\end{array}\right)$

Solution: E^{-1} is equal to c).

Computing A^{-1}

Let A be an $n \times n$ matrix. Here's how to compute A^{-1}.

1. Row reduce the augmented matrix $\left(A \mid I_{n}\right)$.
2. If the result has the form $\left(I_{n} \mid B\right)$, then A is invertible and $B=A^{-1}$.
3. Otherwise, A is not invertible.

Example

$$
A=\left(\begin{array}{rrr}
1 & 0 & 4 \\
0 & 1 & 2 \\
0 & -3 & -4
\end{array}\right)
$$

Computing A^{-1}

Example

$$
\begin{aligned}
& \left(\begin{array}{rrr|rrr}
1 & 0 & 4 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 & 1 & 0 \\
0 & -3 & -4 & 0 & 0 & 1
\end{array}\right) \quad \begin{array}{l}
R_{3}=R_{3}+3 R_{2} \\
\text { mamama }
\end{array} \quad\left(\begin{array}{lll|lll}
1 & 0 & 4 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 & 1 & 0 \\
0 & 0 & 2 & 0 & 3 & 1
\end{array}\right) \\
& \begin{array}{l}
\begin{array}{l}
R_{1}=R_{1}-2 R_{3} \\
R_{2}=R_{2}-R_{3} \\
\text { mamamun }
\end{array} \\
\end{array}\left(\begin{array}{lll|lrr}
1 & 0 & 0 & 1 & -6 & -2 \\
0 & 1 & 0 & 0 & -2 & -1 \\
0 & 0 & 2 & 0 & 3 & 1
\end{array}\right) \\
& \xrightarrow[R_{3}=R_{3} \div 2]{\text { mannum }}\left(\begin{array}{lll|lll}
1 & 0 & 0 & 1 & -6 & -2 \\
0 & 1 & 0 & 0 & -2 & -1 \\
0 & 0 & 1 & 0 & 3 / 2 & 1 / 2
\end{array}\right) \\
& \text { So }\left(\begin{array}{rrr}
1 & 0 & 4 \\
0 & 1 & 2 \\
0 & -3 & -4
\end{array}\right)^{-1}=\left(\begin{array}{rrr}
1 & -6 & -2 \\
0 & -2 & -1 \\
0 & 3 / 2 & 1 / 2
\end{array}\right) \text {. } \\
& \text { Check: } \quad\left(\begin{array}{rrr}
1 & 0 & 4 \\
0 & 1 & 2 \\
0 & -3 & -4
\end{array}\right)\left(\begin{array}{rrr}
1 & -6 & -2 \\
0 & -2 & -1 \\
0 & 3 / 2 & 1 / 2
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Why Does This Work?

First answer: We can think of the algorithm as simultaneously solving the equations

$$
\begin{array}{ll}
A x_{1}=e_{1}: & \left(\begin{array}{rrr|rrr}
1 & 0 & 4 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 & 1 & 0 \\
0 & -3 & -4 & 0 & 0 & 1
\end{array}\right) \\
A x_{2}=e_{2}: & \left(\begin{array}{rrr|rrr}
1 & 0 & 4 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 & 1 & 0 \\
0 & -3 & -4 & 0 & 0 & 1
\end{array}\right) \\
A x_{3}=e_{3}: & \left(\begin{array}{rrr|rrr}
1 & 0 & 4 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 & 1 & 0 \\
0 & -3 & -4 & 0 & 0 & 1
\end{array}\right)
\end{array}
$$

- From theory: $x_{i}=A^{-1} A x_{i}=A^{-1} e_{i}$. So x_{i} is the i-th column of A^{-1}.
- Row reduction: the solution x_{i} appears in i-th column in the augmented part.

Second answer: Through elementary matrices (important for next class)

Why Does The Inversion Algorithm Work?

Theorem
An $n \times n$ matrix A is invertible if and only if it is row equivalent to I_{n}.

Why? Say the row operations taking A to I_{n} are the elementary matrices $E_{1}, E_{2}, \ldots, E_{k}$. So
pay attention to the order! $\longrightarrow E_{k} E_{k-1} \cdots E_{2} E_{1} A=I_{n}$

$$
\begin{aligned}
\Longrightarrow E_{k} E_{k-1} \cdots E_{2} E_{1} A A^{-1} & =A^{-1} \\
\Longrightarrow E_{k} E_{k-1} \cdots E_{2} E_{1} I_{n} & =A^{-1} .
\end{aligned}
$$

This is what we do when row reducing the augmented matrix:
Do same row operations to A (first line above) and to I_{n} (last line above). Therefore, you'll end up with I_{n} and A^{-1}.

$$
\left(A \mid I_{n}\right) \text { un } \rightarrow\left(I_{n} \mid A^{-1}\right)
$$

The Really Big Theorem for Square Matrices of Math 2802

The Invertible Matrix Theorem
Let A be an $n \times n$ matrix, and let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be defined by $T(x)=A x$. The following statements are equivalent.

1. A is invertible.
2. T is invertible.
3. T is one-to-one.
4. T is onto.
5. A has a left inverse (there exists B such that $B A=I_{n}$).
6. A has a right inverse (there exists B such that $A B=I_{n}$).
7. A^{T} is invertible.
8. A is row equivalent to I_{n}.
9. A has n pivots (one on each column and row).
10. The columns of A are linearly independent.
11. $A x=0$ has only the trivial solution.
12. The columns of A span \mathbf{R}^{n}.
13. $A x=b$ is consistent for all b in \mathbf{R}^{n}.

Approach to The Invertible Matrix Theorem

As with all Equivalence theorems:

- For invertible matrices: all statements of the Invertible Matrix Theorem are true.
- For non-invertible matrices: all statements of the Invertible Matrix Theorem are false.

Tackle the assertions!
You know enough at this point to be able to reduce all of the statements to assertions about the pivots of a square matrix.

Strong recommendation: If you want to understand invertible matrices, go through all of the conditions of the IMT and try to figure out on your own why they're all equivalent.

Linear Independence and Matrix Columns

By definition, $\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ is linearly independent if and only if the vector equation

$$
x_{1} v_{1}+x_{2} v_{2}+\cdots+x_{p} v_{p}=0
$$

has only the trivial solution. This holds if and only if the matrix equation

$$
A x=0
$$

has only the trivial solution, where A is the matrix with columns $v_{1}, v_{2}, \ldots, v_{p}$:

$$
A=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{p} \\
\mid & \mid & & \mid
\end{array}\right)
$$

This is true if and only if the matrix A has a pivot in each column.

Important

- The vectors $v_{1}, v_{2}, \ldots, v_{p}$ are linearly independent if and only if the matrix with columns $v_{1}, v_{2}, \ldots, v_{p}$ has a pivot in each column.
- Solving the matrix equation $A x=0$ will either verify that the columns $v_{1}, v_{2}, \ldots, v_{p}$ of A are linearly independent, or will produce a linear dependence relation.

Linear Independence: Two more facts

Fact 1: Say $v_{1}, v_{2}, \ldots, v_{n}$ are in \mathbf{R}^{m}. If $n>m$ then $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is linearly dependent: the matrix

$$
A=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{n} \\
\mid & \mid & & \mid
\end{array}\right) .
$$

cannot have a pivot in each column (it is too wide).
This says you can't have 4 linearly independent vectors in \mathbf{R}^{3}, for instance.

A wide matrix can't have linearly independent columns.

Fact 2: If one of $v_{1}, v_{2}, \ldots, v_{n}$ is zero, then $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is linearly dependent. For instance, if $v_{1}=0$, then

$$
1 \cdot v_{1}+0 \cdot v_{2}+0 \cdot v_{3}+\cdots+0 \cdot v_{n}=0
$$

is a linear dependence relation.

A set containing the zero vector is linearly dependent.

Linear Independence

(Algorithmic) increasing span criterion

If the vector v_{j} is not in $\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{j-1}\right\}$,
it means $\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{j}\right\}$ is bigger than $\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{j-1}\right\}$.
If true for all j
A set of vectors is linearly independent if and only if, every time you add another vector to the set, the span gets bigger.

Theorem
A set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ is linearly independent if and only if, for every j, the span of $v_{1}, v_{2}, \ldots, v_{j}$ is strictly larger than the span of $v_{1}, v_{2}, \ldots, v_{j-1}$.

Extra: Linear Dependence

Proof of Algorithmic Criterion

Suppose a set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ is linearly dependent.
Take the largest j such that v_{j} is in the span of the others.

Is v_{j} is in the span of $v_{1}, v_{2}, \ldots, v_{j-1}$?
For example, $j=3$ and

$$
v_{3}=2 v_{1}-\frac{1}{2} v_{2}+6 v_{4}
$$

Rearrange:

$$
v_{4}=-\frac{1}{6}\left(2 v_{1}-\frac{1}{2} v_{2}-v_{3}\right)
$$

so v_{4} is also in the span of v_{1}, v_{2}, v_{3}, but v_{3} was supposed to be the last one that was in the span of the others.

