Section 2.5

LU Factorization

First factorization of MATH 2802

A guru provides, for (suitable) $m \times n$ matrix A, matrices L and U such that

- L is lower triangular $m \times m$ matrix (with ones on the diagonal)
- U is an $m \times n$ row echelon form (not necessary reduced)
- $A=L U$
E.g.

$$
A=\left(\begin{array}{ccccc}
2 & 4 & -1 & 5 & -1 \\
-4 & -5 & 3 & -8 & 1 \\
2 & -5 & -4 & 1 & 8 \\
-6 & 0 & 7 & -3 & 1
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-2 & 1 & 0 & 0 \\
1 & -3 & 1 & 0 \\
-3 & 4 & 2 & 1
\end{array}\right)\left(\begin{array}{ccccc}
2 & 4 & -1 & 5 & -2 \\
0 & 3 & 1 & 2 & -3 \\
0 & 0 & 0 & 2 & 1 \\
0 & 0 & 0 & 0 & 5
\end{array}\right)
$$

The matrix $L U$
It helps to interpret L as instructions on how to sum rows of U.

A short cut to solving equations

How to save time in solving $A x=b$?

1. Visit the guru and get L and U,
2. Quickily solve $L y=b$,
3. Quickily solve $U x=y$,
4. Claim that x is a solution to $A x=b$.

Are we allowed to do that?

Check if x is really a solution: Start with the guru's information $A=L U$

$$
A x=L U x=L(U x)=L y=b
$$

Interpret
Transformation A as a composition: first apply transformation U then L.
Trace back to find a solution: First solve for L, then solve for U.

Efficiency

Dense matrices -few entries are zeros-
Sparse matrices -most entries are zeros.

Save up to $2 / 3$ of the time

If $n \geq 30, A$ is $n \times n$ and dense

- Computing L and $U: \sim 2 n^{3} / 3$ flops.
- Solving a triangular system: $\sim n^{2}$ flops
vs.
- Computing $A^{-1}: \sim 2 n^{3}$ flops
- Matrix multiplication $A^{-1} x: \sim 2 n^{2}$
- Extra downside: roundoff errors in A^{-1}

Avoid dense matrices
If A is sparse it is likely that

- A^{-1} is dense
- L and U are sparse

Become the guru and sell factorizations

Our assumption: Row reduction of A requires no row sawps

1. Row reduce the matrix A, but do not normalize pivots to being one's; e.g.

$$
\left(E_{6} E_{5} E_{4} E_{3} E_{2} E_{1}\right) A=U
$$

2. Separate the row reduction according to 'clearing' pivot columns

$$
\left(E_{6}\right)\left(E_{5} E_{4}\right)\left(E_{3} E_{2} E_{1}\right) A=U
$$

3. Now left multiply by the inverses of the elementary matrices:

$$
A=\left(\left(E_{6}\right)\left(E_{5} E_{4}\right)\left(E_{3} E_{2} E_{1}\right)\right)^{-1} U=L U
$$

Looks like a very complicated matrix:

$$
L=\left(\left(E_{6}\right)\left(E_{5} E_{4}\right)\left(E_{3} E_{2} E_{1}\right)\right)^{-1}
$$

but can be read off the row-reduction steps.

Construct the matrix L

$$
L=\left(\left(E_{6}\right)\left(E_{5} E_{4}\right)\left(E_{3} E_{2} E_{1}\right)\right)^{-1}
$$

2. Separate the row reduction according to 'clearing' pivot columns

$$
\begin{aligned}
A & =\left[\begin{array}{rrrrr}
2 & 4 & -1 & 5 & -2 \\
-4 & -5 & 3 & -8 & 1 \\
2 & -5 & -4 & 1 & 8 \\
-6 & 0 & 7 & -3 & 1
\end{array}\right] \sim\left[\begin{array}{rrrrr}
2 & 4 & -1 & 5 & -2 \\
0 & 3 & 1 & 2 & -3 \\
0 & -9 & -3 & -4 & 10 \\
0 & 12 & 4 & 12 & -5
\end{array}\right]=A_{1} \\
{\left[\begin{array}{r}
2 \\
-4 \\
0
\end{array}\right]\left[\begin{array}{r}
3 \\
0
\end{array}\right] } & \sim A_{2}=\left[\begin{array}{rrrrr}
2 & 4 & -1 & 5 & -2 \\
0 & 3 & 1 & 2 & -3 \\
0 & 0 & 0 & 2 & 1 \\
0 & 0 & 0 & 4 & 7
\end{array}\right] \sim\left[\begin{array}{rrrrr}
2 & 4 & -1 & 5 & -2 \\
0 & 3 & 1 & 2 & -3 \\
0 & 0 & 0 & 2 & 1 \\
0 & 0 & 0 & 0 & 5
\end{array}\right]=U
\end{aligned}
$$

Construct the matrix L

$$
L=\left(\left(E_{6}\right)\left(E_{5} E_{4}\right)\left(E_{3} E_{2} E_{1}\right)\right)^{-1}
$$

2. Separate the row reduction according to 'clearing' pivot columns

$$
\begin{aligned}
A & =\left[\begin{array}{rrrrr}
2 & 4 & -1 & 5 & -2 \\
-4 & -5 & 3 & -8 & 1 \\
2 & -5 & -4 & 1 & 8 \\
-6 & 0 & 7 & -3 & 1
\end{array}\right] \sim\left[\begin{array}{rrrrr}
2 & 4 & -1 & 5 & -2 \\
0 & 3 & 1 & 2 & -3 \\
0 & -9 & -3 & -4 & 10 \\
0 & 12 & 4 & 12 & -5
\end{array}\right]=A_{1} \\
{\left[\begin{array}{r}
2 \\
-4 \\
0
\end{array}\right]\left[\begin{array}{r}
3 \\
0
\end{array}\right] } & \sim A_{2}=\left[\begin{array}{rrrrr}
2 & 4 & -1 & 5 & -2 \\
0 & 3 & 1 & 2 & -3 \\
0 & 0 & 0 & 2 & 1 \\
0 & 0 & 0 & 4 & 7
\end{array}\right] \sim\left[\begin{array}{rrrrr}
2 & 4 & -1 & 5 & -2 \\
0 & 3 & 1 & 2 & -3 \\
0 & 0 & 0 & 2 & 1 \\
0 & 0 & 0 & 0 & 5
\end{array}\right]=U
\end{aligned}
$$

Process on the backstage

This backstage process can be read off the row-reduction steps.

1. Divide into streaks of elementary matrices with non-zero entries on the same column. E.g. $E_{3} E_{2} E_{1}$
2. Superposition: The product of these elementary matrices will have the same non-entries (see atomic triangular matrix).
3. Inverse: $\left(E_{3} E_{2} E_{1}\right)^{-1}$ changes the sign of all off-diagonal entries.

$$
\begin{array}{r}
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
3 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
3 & 0 & 0 & 1
\end{array}\right) \\
\left(E_{3} E_{2} E_{1}\right)^{-1}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-2 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
-3 & 0 & 0 & 1
\end{array}\right)
\end{array}
$$

A second example

Find the $L U$ factorization of A :

$$
\begin{aligned}
& A=\left[\begin{array}{rrrr}
2 & -4 & -2 & 3 \\
6 & -9 & -5 & 8 \\
2 & -7 & -3 & 9 \\
4 & -2 & -2 & -1 \\
-6 & 3 & 3 & 4
\end{array}\right] \sim\left[\begin{array}{rrrr}
2 & -4 & -2 & 3 \\
0 & 3 & 1 & -1 \\
0 & -3 & -1 & 6 \\
0 & 6 & 2 & -7 \\
0 & -9 & -3 & 13
\end{array}\right] \\
& \sim\left[\begin{array}{rrrr}
2 & -4 & -2 & 3 \\
0 & 3 & 1 & -1 \\
0 & 0 & 0 & 5 \\
0 & 0 & 0 & -5 \\
0 & 0 & 0 & 10
\end{array}\right] \sim\left[\begin{array}{rrrr}
2 & -4 & -2 & 3 \\
0 & 3 & 1 & -1 \\
0 & 0 & 0 & 5 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]=U
\end{aligned}
$$

$$
L=\left[\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
3 & 1 & 0 & 0 & 0 \\
1 & -1 & 1 & 0 & 0 \\
2 & 2 & -1 & 1 & 0 \\
-3 & -3 & 2 & 0 & 1
\end{array}\right]
$$

Electrical networks

Electric networks can be analysed as composition of smaller networks.
$\binom{v_{2}}{i_{2}}=A\binom{v_{1}}{i_{1}}$

Transfer matrix A: relation between the input $\binom{v_{2}}{i_{2}}$ and the output $\binom{v_{1}}{i_{1}}$.
Engineers gives the following information:

$$
\left[\begin{array}{cc}
1 & -R_{1} \\
0 & 1
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{cc}
1 & 0 \\
-1 / R_{2} & 1
\end{array}\right]
$$

A ladder circuit

If $\binom{v_{1}}{i_{1}}=\binom{1}{1}$ and the resistances in the circuit are given by $R_{1}=3$ and $R_{2}=.5$. Give the value of $\binom{v_{3}}{i_{3}}$

$$
\begin{aligned}
\binom{v_{3}}{i_{3}} & =A_{2}\binom{v_{2}}{i_{2}}=A_{2} A_{1}\binom{v_{1}}{i_{1}} \\
& =\left(\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -3 \\
0 & 1
\end{array}\right)\binom{1}{1}=\left(\begin{array}{cc}
1 & -3 \\
-2 & 7
\end{array}\right)\binom{1}{1}=\binom{-2}{5}
\end{aligned}
$$

