Section 2.6

The Leontief model

Column corresponding to sector s shows where the production of s is required among all sectors.

		Distribution of Output from:			
(.0.4	.6 \	Coal	Electric	Steel	Purchased by:
C = (.6 .1)	.2	.0	.4	.6	Coal
.4 .5	.2 /	.6	.1	.2	Electric
× ×	,	.4	.5	.2	Steel

E.g.

- ► Coal industry sells all its production to electric and steel industry.
- ▶ To procude electricity, the plant needs 10% of its production to run.
- ► To produce steel elements, we need to use 20% of steel production to build tools and factory.

Read off cost-production matrix

If total production of coal pays x1 dollars, then the revenue of coal from the distinct sectors is given by

$$C\begin{pmatrix} x_1\\0\\0 \end{pmatrix} = x_1 \begin{pmatrix} 0\\.4\\.6 \end{pmatrix}$$

That is, 40% of revenue is paid by electric sector and 60% of revenue is paid by steel sector

• If coal, electric and steel sectors set prices of production at x_1, x_2 and x_3 ,

$$Cx = \begin{pmatrix} .4x_2 + .6x_3 \\ .6x_1 + .1x_2 + .2x_3 \\ .4x_1 + .5x_2 + .2x_3 \end{pmatrix}$$

then *expenses for coal* industry are given by 'coal' *entry of vector Cx*:

$$.4x_2 + .6x_3$$

Economy equilibrium prices

• Equilibrium prices can be assigned to the total outputs of the various sectors in such a way that the income of each sector balances its expenses

If coal, electric and steel sectors set prices of production at x_1, x_2 and x_3 ,

$$Cx = \begin{pmatrix} .4x_2 + .6x_3 \\ .6x_1 + .1x_2 + .2x_3 \\ .4x_1 + .5x_2 + .2x_3 \end{pmatrix}$$

then expenses *for coal* industry are equal to total revenue of coal sector:

 $x_1 = .4x_2 + .6x_3$

Find equilibrium prices Solve the linear equation Cx = x; equivalently solve (I - C)x = 0

This is a non-profit economy.

- > To receive orders, sectors must have surplus production to sell.
- That is, entries per column add to less than 1

	(-				Inputs Consumed per Unit of Output			
	/ .5	.4	.2 \	Purchased from:	Manufacturing	Agriculture	Services	
<i>C</i> =	.2	.3	.1	Manufacturing	.50	.40	.20	
	1.1	.1	.3/	Agriculture	.20	.30	.10	
	\ '-		- /	Services	.10	.10	.30	

If manufacturing sector sells 100 units it needs to buy from other sectors:

$$C\begin{pmatrix}100\\0\\0\end{pmatrix} = 100\begin{pmatrix}.5\\.2\\.1\end{pmatrix} = \begin{pmatrix}50\\20\\10\end{pmatrix}$$

E.g. To produce tennis shoes, manufacturing sector needs to buy laces (from manufacturing sector)

Example

Suppose the maritime sector requires $d = \begin{pmatrix} 20\\35\\80 \end{pmatrix}$: 20,35 and 80 units of production of sectors manufactoring, agriculture and services (MAS), respectively.

How much production x do sectors MAS need to meet exactly the demand?

Leontief says The matrix $(I - C)^{-1}$ exists and your solution is $x = (I - C)^{-1}d$

Why?

- 1. The production itself requires some of the other sectors input: Cx
- 2. The remaining (surplus) production matches exactly the demand

$$x = Cx + d$$

We are still assuming that the inverse exists.

Existence of $(I - C)^{-1}$

Real numbers exercise: Prove that $\sum_{k=0}^{\infty} x^k$ is finite when |x| < 1. In fact $\sum_{k=0}^{\infty} x^k = (1-x)^{-1}$

$$(1-x)(1+x+x^2) = 1-x^3$$
$$(1-x)(1+x+x^3) = 1-x^4$$
$$(1-x)(1+x+\ldots+x^k) = 1-x^{k+1}$$

Proof: Since x^{k+1} is smaller and smaller $(x^k \to 0)$:

$$(1-x)\sum_{k=0}^{\infty}x^{k}=1$$

So the infinite sum and 1 - x are inverse of each other.

Fact For a matrix C, if entries are positive and its column sums are less than 1, then $\lim_{k \to \infty} C^k = 0.$ (because all eigenvalues of C are less than 1) $(1 - C)^{-1}$ exists and equals $I + C + C^2 + C^3 \cdots$

When initial demand is d

- 1. MAS must purchase (from themselves) Cd for the production stage.
- 2. There is a new order: Cd, which requires its own production stage C(Cd)
- 3. There is a new order: $C^2 d \dots$

Going out of the loop: At some point new order $C^k d$ is negligible!

Total production is $x \sim d + Cd + C^2d + \cdots + C^kd = (1 + C + \cdots + C^k)d$