Section 2.6

The Leontief model

The cost-production matrix

- Column corresponding to sector s shows where the production of s is required among all sectors.
Distribution of Output from:

$$
C=\left(\begin{array}{lll}
.0 & .4 & .6 \\
.6 & .1 & .2 \\
.4 & .5 & .2
\end{array}\right)
$$

Coal	Electric	Steel	Purchased by:
.0	.4	.6	Coal
.6	.1	.2	Electric
.4	.5	.2	Steel

E.g.

- Coal industry sells all its production to electric and steel industry.
- To procude electricity, the plant needs 10% of its production to run.
- To produce steel elements, we need to use 20% of steel production to build tools and factory.

Read off cost-production matrix

- If total production of coal pays x_{1} dollars, then the revenue of coal from the distinct sectors is given by

$$
C\left(\begin{array}{c}
x_{1} \\
0 \\
0
\end{array}\right)=x_{1}\left(\begin{array}{l}
0 \\
.4 \\
.6
\end{array}\right)
$$

That is, 40% of revenue is paid by electric sector and 60% of revenue is paid by steel sector

- If coal, electric and steel sectors set prices of production at x_{1}, x_{2} and x_{3},

$$
C x=\left(\begin{array}{c}
.4 x_{2}+.6 x_{3} \\
.6 x_{1}+.1 x_{2}+.2 x_{3} \\
.4 x_{1}+.5 x_{2}+.2 x_{3}
\end{array}\right)
$$

then expenses for coal industry are given by 'coal' entry of vector Cx:

$$
.4 x_{2}+.6 x_{3}
$$

Economy equilibrium prices

- Equilibrium prices can be assigned to the total outputs of the various sectors in such a way that the income of each sector balances its expenses

If coal, electric and steel sectors set prices of production at x_{1}, x_{2} and x_{3},

$$
C x=\left(\begin{array}{c}
.4 x_{2}+.6 x_{3} \\
.6 x_{1}+.1 x_{2}+.2 x_{3} \\
.4 x_{1}+.5 x_{2}+.2 x_{3}
\end{array}\right)
$$

then expenses for coal industry are equal to total revenue of coal sector:

$$
x_{1}=.4 x_{2}+.6 x_{3}
$$

Find equilibrium prices
Solve the linear equation $C x=x$; equivalently solve

$$
(I-C) x=0
$$

- This is a non-profit economy.

Input-Output model

When an order arrives

- To receive orders, sectors must have surplus production to sell.
- That is, entries per column add to less than 1

$$
C=\left(\begin{array}{lll}
.5 & .4 & .2 \\
.2 & .3 & .1 \\
.1 & .1 & .3
\end{array}\right)
$$

	Inputs Consumed per Unit of Output		
Purchased from:	Manufacturing	Agriculture	Services
Manufacturing	.50	.40	.20
Agriculture	.20	.30	.10
Services	.10	.10	.30

If manufacturing sector sells 100 units it needs to buy from other sectors:

$$
C\left(\begin{array}{c}
100 \\
0 \\
0
\end{array}\right)=100\left(\begin{array}{l}
.5 \\
.2 \\
.1
\end{array}\right)=\left(\begin{array}{l}
50 \\
20 \\
10
\end{array}\right)
$$

E.g. To produce tennis shoes, manufacturing sector needs to buy laces (from manufacturing sector)

Production equation

Example

Suppose the maritime sector requires $d=\left(\begin{array}{l}20 \\ 35 \\ 80\end{array}\right): 20,35$ and 80 units of production of sectors manufactoring, agriculture and services (MAS), respectively.

How much production x do sectors MAS need to meet exactly the demand?

Why?

1. The production itself requires some of the other sectors input: C_{x}
2. The remaining (surplus) production matches exactly the demand

$$
x=C x+d
$$

We are still assuming that the inverse exists.

Existence of $(I-C)^{-1}$

Real numbers exercise: Prove that $\sum_{k=0}^{\infty} x^{k}$ is finite when $|x|<1$.

- In fact $\sum_{k=0}^{\infty} x^{k}=(1-x)^{-1}$

$$
\begin{aligned}
(1-x)\left(1+x+x^{2}\right) & =1-x^{3} \\
(1-x)\left(1+x+x^{3}\right) & =1-x^{4} \\
(1-x)\left(1+x+\ldots+x^{k}\right) & =1-x^{k+1}
\end{aligned}
$$

Proof: Since x^{k+1} is smaller and smaller $\left(x^{k} \rightarrow 0\right)$:

$$
(1-x) \sum_{k=0}^{\infty} x^{k}=1
$$

So the infinite sum and $1-x$ are inverse of each other.
Fact
For a matrix C, if entries are positive and its column sums are less than 1, then

$$
\lim _{k \rightarrow \infty} C^{k}=0
$$

(because all eigenvalues of C are less than 1)

- $(1-C)^{-1}$ exists and equals $I+C+C^{2}+C^{3} \cdots$

Leontief's intuition

When initial demand is d

1. MAS must purchase (from themselves) $C d$ for the production stage.
2. There is a new order: $C d$, which requires its own production stage $C(C d)$
3. There is a new order: $C^{2} d \ldots$

Going out of the loop: At some point new order $C^{k} d$ is negligible!
Total production is $x \sim d+C d+C^{2} d+\cdots+C^{k} d=\left(1+C+\cdots+C^{k}\right) d$

