Announcements

Tuesday, February 13
Good job on the midterm!!

- This week is a review from MATH 1553
- Comprehensive notes can be found in http://people.math.gatech.edu/~leslava3/1718S-2802.html
- Selected material at http:
//people.math.gatech.edu/~leslava3/1718S-2802/schedule.html

Sections 3.1-3.2

Determinants

The Idea of Determinants

Let A be an $n \times n$ matrix. Determinants are only for square matrices.
The columns $v_{1}, v_{2}, \ldots, v_{n}$ give you n vectors in \mathbf{R}^{n}. These determine a parallelepiped P.

Observation: the volume of P is zero \Longleftrightarrow the columns are linearly dependent (P is "flat") \Longleftrightarrow the matrix A is not invertible.

The determinant of A will be a number $\operatorname{det}(A)$ whose absolute value is the volume of P.
In particular, $\operatorname{det}(A) \neq 0 \Longleftrightarrow A$ is invertible.

Determinants of 2×2 Matrices

Revisited

There is a formula in the 2×2 case:

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d-b c
$$

What does this have to do with volumes?

$$
v_{1}=\binom{2}{0} \quad v_{2}=\binom{1}{3}
$$

The area of the parallelogram is

$$
\text { base } \times \text { height }=2 \cdot 3=\left|\operatorname{det}\left(\begin{array}{ll}
2 & 1 \\
0 & 3
\end{array}\right)\right| .
$$

The area of the parallelogram is always $|a d-b c|$. If v_{1} is not on the x-axis: it's a fun geometry problem!

Note: The volume is zero if and only if the columns are collinear

Determinants of 3×3 Matrices

Here's a formula:

$$
\operatorname{det}\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)=\begin{array}{r}
a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32} \\
-a_{13} a_{22} a_{31}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}
\end{array}
$$

How to remember this?
Draw a bigger matrix, repeating the first two columns to the right:

$$
+\left|\begin{array}{lllll}
a_{11} & a_{12} & a_{13} & a_{11} & a_{12} \\
a_{21} & a_{22} & a_{23} & a_{21} & a_{22} \\
a_{31} & a_{32} & a_{33} & a_{31} & a_{32}
\end{array}\right|-\left|\begin{array}{lllll}
a_{11} & a_{12} & a_{13} & a_{11} & a_{12} \\
a_{21} & a_{22} & a_{23} & a_{21} & a_{22} \\
a_{31} & a_{32} & a_{33} & a_{31} & a_{32}
\end{array}\right|
$$

For example,

$$
\operatorname{det}\left(\begin{array}{rrr}
5 & 1 & 0 \\
-1 & 3 & 2 \\
4 & 0 & -1
\end{array}\right)=\left|\begin{array}{rrrr}
5 & 1 & 3 \\
-1 & 0 & 1 & 1
\end{array}\right|=-8+0-0-0-1=-8
$$

Cofactor expansion

Recursive formula: you compute a larger determinant in terms of smaller ones.
Let A be an $n \times n$ matrix.
$A_{i j}=i j$ th minor of A
$=(n-1) \times(n-1)$ matrix you get by deleting the ith row and j th column
$C_{i j}=i j$ th cofactor of $A=(-1)^{i+j} \operatorname{det} A_{i j}$
The signs of the cofactors follow a checkerboard pattern:

$$
\left(\begin{array}{cccc}
+ & - & + & - \\
- & + & - & + \\
+ & - & + & - \\
- & + & - & +
\end{array}\right)
$$

\pm in the $i j$ entry is the sign of $C_{i j}$

Definition

The determinant of an $n \times n$ matrix A is

$$
\operatorname{det}(A)=\sum_{j=1}^{n} a_{1 j} C_{1 j}=a_{11} C_{11}+a_{12} C_{12}+\cdots+a_{1 n} C_{1 n}
$$

This formula is called cofactor expansion along the first row.

Example: Cofactor expansion along first row

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{rrr}
5 & 1 & 0 \\
-1 & 3 & 2 \\
4 & 0 & -1
\end{array}\right)=5 \cdot \operatorname{det}\left(\begin{array}{rrr}
5 \\
5 & -3 & 2 \\
-5 & -1
\end{array}\right)-1 \cdot \operatorname{det}\left(\begin{array}{rrr}
5 & \\
-1 & 3 & 2 \\
4 & 0 & -1
\end{array}\right) \\
& +0 \cdot \operatorname{det}\left(\begin{array}{ccc}
5 \mathrm{MNMMNO} \\
-1 & 3 & 2 \\
4 & 0 & -\$
\end{array}\right) \\
& =5 \cdot \operatorname{det}\left(\begin{array}{cc}
3 & 2 \\
0 & -1
\end{array}\right)-1 \cdot \operatorname{det}\left(\begin{array}{cc}
-1 & 2 \\
4 & -1
\end{array}\right)+0 \cdot \operatorname{det}\left(\begin{array}{cc}
-1 & 3 \\
4 & 0
\end{array}\right) \\
& =5 \cdot(-3-0)-1 \cdot(1-8) \\
& =-15+7=-8
\end{aligned}
$$

Cofactor expasion: Specify point of reference...

Recall: the cofactor expansion along the first row.

$$
\operatorname{det}(A)=\sum_{j=1}^{n} a_{1 j} C_{1 j}=a_{11} C_{11}+a_{12} C_{12}+\cdots+a_{1 n} C_{1 n}
$$

Actually, you can expand cofactors along any row or column you like! Good
trick: Use cofactor expansion along a row or a column with a lot of zeros.

$$
A=\left(\begin{array}{lll}
2 & 1 & 0 \\
1 & 1 & 0 \\
5 & 9 & 1
\end{array}\right)
$$

It looks easiest to expand along the third column:

$$
\begin{aligned}
\operatorname{det} A & =0 \cdot \operatorname{det}\binom{\text { don't }}{\text { care }}-0 \cdot \operatorname{det}\binom{\text { don't }}{\text { care }}+1 \cdot \operatorname{det}\left(\begin{array}{ccc}
2 & 1 & \theta \\
1 & 1 & \frac{8}{8} \\
5 \mathrm{M} \cdot(1)
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)=2-1=1
\end{aligned}
$$

Poll

If you expand repeatedly along the first column, you get

$$
\begin{aligned}
& 1 \cdot \operatorname{det}\left(\begin{array}{rrrrr}
-2 & -3 & 13 & 11 & 1 \\
0 & -1 & -9 & 7 & 18 \\
0 & 0 & 3 & 6 & -8 \\
0 & 0 & 0 & 1 & -11 \\
0 & 0 & 0 & 0 & -1
\end{array}\right)=1 \cdot(-2) \cdot \operatorname{det}\left(\begin{array}{rrrr}
-1 & -9 & 7 & -18 \\
0 & 3 & 6 & -8 \\
0 & 0 & 1 & -11 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& \quad=1 \cdot(-2) \cdot(-1) \cdot \operatorname{det}\left(\begin{array}{rrr}
3 & 6 & -8 \\
0 & 1 & -11 \\
0 & 0 & -1
\end{array}\right)=1 \cdot(-2) \cdot(-1) \cdot 3 \cdot \operatorname{det}\left(\begin{array}{cc}
1 & -11 \\
0 & -1
\end{array}\right) \\
& \quad=1 \cdot(-2) \cdot(-1) \cdot 3 \cdot 1 \cdot(-1)=-6
\end{aligned}
$$

The Determinant of an Upper-Triangular Matrix

Theorem

The determinant of an upper-triangular matrix is the product of the diagonal entries:

$$
\operatorname{det}\left(\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
0 & a_{22} & a_{23} & \cdots & a_{2 n} \\
0 & 0 & a_{33} & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & a_{n n}
\end{array}\right)=a_{11} a_{22} a_{33} \cdots a_{n n}
$$

Trick: Expand along the last row
This works for any matrix that is upper-triangular (all entries below the main diagonal are zero).

The same is true for lower-triangular matrices. (Repeatedly expand along the first row.)

Linear Transformations and volumen

If S is the unit cube, then $T(S)$ is the parallelepiped formed by the columns of A. The volumen changes according to $\operatorname{det}(A)$.

For curvy regions: break S up into tiny cubes; each one is scaled by $|\operatorname{det}(A)|$. Then use calculus to reduce to the previous situation!

Defining the Determinant in Terms of its Properties

Definition

The determinant is a function

$$
\text { det: }\{\text { square matrices }\} \longrightarrow \mathbf{R}
$$

with the following defining properties:

1. $\operatorname{det}\left(I_{n}\right)=1$
2. If we do a row replacement on a matrix, the determinant does not change.
3. If we swap two rows of a matrix, the determinant scales by -1 .
4. If we scale a row of a matrix by k, the determinant scales by k.

Why would we think of these properties? This is how volumes work!

1. The volume of the unit cube is 1 .
2. Volumes don't change under a shear.
3. Volume of a mirror image is negative of the volume?
4. If you scale one coordinate by k, the volume is multiplied by k.

Properties of the Determinant

2×2 matrix

$$
\operatorname{det}\left(\begin{array}{cc}
1 & -2 \\
0 & 3
\end{array}\right)=3
$$

Scale: $R_{2}=\frac{1}{3} R_{2}$

$$
\operatorname{det}\left(\begin{array}{cc}
1 & -2 \\
0 & 1
\end{array}\right)=1
$$

Row replacement: $R_{1}=R_{1}+2 R_{2}$

$$
\operatorname{det}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=1
$$

Magical Properties of the Determinant

1. det: \{square matrices\} $\rightarrow \mathbf{R}$ is the only function satisfying the defining properties (1)-(4).
2. A is invertible if and only if $\operatorname{det}(A) \neq 0$.
3. If we row reduce A without row scaling, then

$$
\operatorname{det}(A)=(-1)^{\# \text { swaps }} \text { (product of diagonal entries in REF). }
$$

4. The determinant can be computed using any cofactor expansion.
5. $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B) \quad$ and $\quad \operatorname{det}\left(A^{-1}\right)=\operatorname{det}(A)^{-1}$.
6. $\operatorname{det}(A)=\operatorname{det}\left(A^{\top}\right)$.
7. $|\operatorname{det}(A)|$ is the volume of the parallelepiped defined by the columns of A.
8. If A is an $n \times n$ matrix with transformation $T(x)=A x$, and S is a subset of \mathbf{R}^{n}, then the volume of $T(S)$ is $|\operatorname{det}(A)|$ times the volume of S. (Even for curvy shapes S.)
9. The determinant is multi-linear (optional material).

Computing the Determinant by Row Reduction

Example first

We can use the properties of the determinant and row reduction to compute the determinant of any matrix!

$$
\operatorname{det}\left(\begin{array}{ccc}
0 & 1 & 0 \tag{swap}\\
1 & 0 & 1 \\
5 & 7 & -4
\end{array}\right)=-\operatorname{det}\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 0 \\
5 & 7 & -4
\end{array}\right)
$$

$$
=-\operatorname{det}\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 7 & -9
\end{array}\right)
$$ tained from the first matrix by scaling by $-1 / 9$. So the determinant of the first matrix is -9 times the determinant of the second matrix.

$$
\begin{aligned}
& =-\operatorname{det}\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & -9
\end{array}\right) \\
& =(-1) \cdot(-9) \operatorname{det}\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =(-1) \cdot(-9) \operatorname{det}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =9
\end{aligned}
$$

Computing the Determinant by Row Reduction

Saving some work We can stop row reducing when we get to row echelon form.

$$
\operatorname{det}\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 1 \\
5 & 7 & -4
\end{array}\right)=\cdots=-\operatorname{det}\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & -9
\end{array}\right)=9
$$

Row reduction
This is almost always the easiest way to compute the determinant of a large, complicated matrix, either by hand or by computer.
Cofactor expansion is $O(n!) \sim O\left(n^{n} \sqrt{n}\right)$, row reduction is $O\left(n^{3}\right)$.

Extra: Multi-Linearity of the Determinant

Think of det as a function of the columns of an $n \times n$ matrix:

$$
\begin{gathered}
\operatorname{det}: \underbrace{\mathbf{R}^{n} \times \mathbf{R}^{n} \times \cdots \times \mathbf{R}^{n}}_{n \text { times }} \longrightarrow \mathbf{R} \\
\operatorname{det}\left(v_{1}, v_{2}, \ldots, v_{n}\right)=\operatorname{det}\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{n} \\
\mid & \mid & & \mid
\end{array}\right) .
\end{gathered}
$$

Multi-linear: For any i and any vectors $v_{1}, v_{2}, \ldots, v_{n}$ and v_{i}^{\prime} and any scalar c,

$$
\begin{aligned}
\operatorname{det}\left(v_{1}, \ldots, v_{i}+v_{i}^{\prime}, \ldots, v_{n}\right) & =\operatorname{det}\left(v_{1}, \ldots, v_{i}, \ldots, v_{n}\right)+\operatorname{det}\left(v_{1}, \ldots, v_{i}^{\prime}, \ldots, v_{n}\right) \\
\operatorname{det}\left(v_{1}, \ldots, c v_{i}, \ldots, v_{n}\right) & =c \operatorname{det}\left(v_{1}, \ldots, v_{i}, \ldots, v_{n}\right) .
\end{aligned}
$$

In words: if column i is a sum of two vectors v_{i}, v_{i}^{\prime}, then the determinant is the sum of two determinants, one with v_{i} in column i, and one with v_{i}^{\prime} in column i. Proof: just expand cofactors along column i.

- We already knew: Scaling one column by c scales det by c.
- Same properties hold if we replace column by row.
- This only works one column (or row) at a time.

Extra: The Determinant is a Function

We can think of the determinant as a function of the entries of a matrix:

$$
\operatorname{det}\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)=\begin{array}{r}
a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32} \\
-a_{13} a_{22} a_{31}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33} .
\end{array}
$$

The formula for the determinant of an $n \times n$ matrix has $n!$ terms.
When mathematicians encounter a function whose formula is too difficult to write down, we try to characterize it in terms of its properties.
P characterizes object X
Not only does object X have property P, but X is the only one thing that has property P.

Other example:

- e^{x} is unique function that has $f^{\prime}(x)=f(x)$ and $f(0)=1$.

Extra: Why is Property 5 true?

In Lay, there's a proof using elementary matrices. Here's another one.
Let B be an $n \times n$ matrix. There are two cases:

1. If $\operatorname{det}(B)=0$, then B is not inverible. So for any matrix $A, B A$ is not invertible. (Otherwise $B^{-1}=A(B A)^{-1}$.) So

$$
\operatorname{det}(B A)=0=0 \cdot \operatorname{det}(A)=\operatorname{det}(B) \operatorname{det}(A)
$$

2. If A is invertible, define another function

$$
f:\{n \times n \text { matrices }\} \longrightarrow \mathbf{R} \quad \text { by } \quad f(B)=\frac{\operatorname{det}(B A)}{\operatorname{det}(A)} .
$$

Let's check the defining properties:

1. $f\left(I_{n}\right)=\operatorname{det}\left(I_{n} A\right) / \operatorname{det}(A)=1$.

2-4. Doing a row operation on B and then multiplying by A, does the same row operation on $B A$. This is because a row operation is left-multiplication by an elementary matrix E, and $(E B) A=E(A B)$. Hence f scales like det with respect to row operations.
By uniqueness, $f=$ det, i.e.,

$$
\operatorname{det}(B)=f(B)=\frac{\operatorname{det}(A B)}{\operatorname{det}(A)} \quad \text { so } \quad \operatorname{det}(A) \operatorname{det}(B)=\operatorname{det}(A B)
$$

