
Announcements
Tuesday, February 13

Good job on the midterm!!

I This week is a review from MATH 1553

I Comprehensive notes can be found in
http://people.math.gatech.edu/~leslava3/1718S-2802.html

I Selected material at http:
//people.math.gatech.edu/~leslava3/1718S-2802/schedule.html

http://people.math.gatech.edu/~leslava3/1718S-2802.html
http://people.math.gatech.edu/~leslava3/1718S-2802/schedule.html
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Sections 3.1-3.2

Determinants



The Idea of Determinants

Let A be an n × n matrix. Determinants are only for square matrices.

The columns v1, v2, . . . , vn give you n vectors in Rn. These determine a
parallelepiped P.
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Observation: the volume of P is zero ⇐⇒ the columns are linearly dependent
(P is “flat”) ⇐⇒ the matrix A is not invertible.

The determinant of A will be a number det(A) whose absolute value is the
volume of P.
In particular, det(A) 6= 0 ⇐⇒ A is invertible.



Determinants of 2 × 2 Matrices
Revisited

There is a formula in the 2× 2 case:

det

(
a b
c d

)
= ad − bc.

What does this have to do with volumes?
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The area of the parallelogram is

base× height = 2 · 3 =

∣∣∣∣det

(
2 1
0 3

)∣∣∣∣ .
The area of the parallelogram is always |ad − bc|. If v1 is not on the x-axis: it’s
a fun geometry problem!

Note: The volume is zero if and only if the columns are collinear



Determinants of 3 × 3 Matrices

Here’s a formula:

det

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 =
a11a22a33 + a12a23a31 + a13a21a32

− a13a22a31 − a11a23a32 − a12a21a33

How to remember this?
Draw a bigger matrix, repeating the first two columns to the right:

+

∣∣∣∣∣∣
a11 a12 a13 a11 a12

a21 a22 a23 a21 a22

a31 a32 a33 a31 a32

∣∣∣∣∣∣−
∣∣∣∣∣∣
a11 a12 a13 a11 a12

a21 a22 a23 a21 a22

a31 a32 a33 a31 a32

∣∣∣∣∣∣

For example,

det

 5 1 0
−1 3 2

4 0 −1

 =

∣∣∣∣∣∣
5 1 0 5 1
−1 3 2 −1 3

4 0 −1 4 0

∣∣∣∣∣∣ = −15 + 8 + 0− 0− 0− 1 = −8



Cofactor expansion

Recursive formula: you compute a larger determinant in terms of smaller ones.

Let A be an n × n matrix.

Aij = ijth minor of A

= (n − 1)× (n − 1) matrix you get by deleting the ith row and jth column

Cij = ijth cofactor of A = (−1)i+j detAij

The signs of the cofactors follow a checkerboard pattern:
+++ −−− +++ −−−
−−− +++ −−− +++
+++ −−− +++ −−−
−−− +++ −−− +++

 ± in the ij entry is the sign of Cij

Definition
The determinant of an n × n matrix A is

det(A) =
n∑

j=1

a1jC1j = a11C11 + a12C12 + · · ·+ a1nC1n.

This formula is called cofactor expansion along the first row.



Example: Cofactor expansion along first row

det

 5 1 0
−1 3 2

4 0 −1

 = 5 · det

 5 1 0
−1 −3 2

4 0 −1

− 1 · det

 5 1 0
−1 3 2

4 0 −1


+ 0 · det

 5 1 0
−1 3 2

4 0 −1


= 5 · det

(
3 2
0 −1

)
− 1 · det

(
−1 2
4 −1

)
+ 0 · det

(
−1 3
4 0

)
= 5 · (−3− 0)− 1 · (1− 8)

= −15 + 7 = −8



Cofactor expasion: Specify point of reference...

Recall: the cofactor expansion along the first row.

det(A) =
n∑

j=1

a1jC1j = a11C11 + a12C12 + · · ·+ a1nC1n.

Actually, you can expand cofactors along any row or column you like! Good

trick: Use cofactor expansion along a row or a column with a lot of zeros.

A =

 2 1 0
1 1 0
5 9 1


It looks easiest to expand along the third column:

detA = 0 · det

(
don’t
care

)
− 0 · det

(
don’t
care

)
+ 1 · det

 2 1 0
1 1 0
5 9 1


= det

(
2 1
1 1

)
= 2− 1 = 1



Poll

det


1 7 −5 14 3 22
0 −2 −3 13 11 1
0 0 −1 −9 7 18
0 0 0 3 6 −8
0 0 0 0 1 −11
0 0 0 0 0 −1

 = ?

A. −6 B. −3 C. −2 D. −1 E. 1 F. 2 G. 3 H. 6

Poll

If you expand repeatedly along the first column, you get

1 · det


−2 −3 13 11 1

0 −1 −9 7 18
0 0 3 6 −8
0 0 0 1 −11
0 0 0 0 −1

 = 1 · (−2) · det

−1 −9 7 −18
0 3 6 −8
0 0 1 −11
0 0 0 1



= 1 · (−2) · (−1) · det

 3 6 −8
0 1 −11
0 0 −1

 = 1 · (−2) · (−1) · 3 · det

(
1 −11
0 −1

)
= 1 · (−2) · (−1) · 3 · 1 · (−1) = −6



The Determinant of an Upper-Triangular Matrix

Theorem
The determinant of an upper-triangular matrix is the product of the diagonal
entries:

det


a11 a12 a13 · · · a1n

0 a22 a23 · · · a2n

0 0 a33 · · · a3n

...
...

...
. . .

...
0 0 0 · · · ann

 = a11a22a33 · · · ann.

This works for any matrix that is upper-triangular (all entries
below the main diagonal are zero).

Trick: Expand along the last row

The same is true for lower-triangular matrices. (Repeatedly expand along the
first row.)



Linear Transformations and volumen

If S is the unit cube, then T (S) is the parallelepiped formed by the columns of
A. The volumen changes according to det(A).

e1

e2 S

vol(S) = 1

A =

(
1 1
−1 1

)
det(A) = 2

T

T (e1)

T (e2)

T (S)

vol(T (S)) = 2

For curvy regions: break S up into tiny cubes; each one is scaled by | det(A)|.
Then use calculus to reduce to the previous situation!

S

vol(T (S)) = 2 vol(S)

T

T (S)



Defining the Determinant in Terms of its Properties

Definition
The determinant is a function

det : {square matrices} −→ R

with the following defining properties:

1. det(In) = 1

2. If we do a row replacement on a matrix, the determinant does not change.

3. If we swap two rows of a matrix, the determinant scales by −1.

4. If we scale a row of a matrix by k, the determinant scales by k.

Why would we think of these properties? This is how volumes work!

1. The volume of the unit cube is 1.

2. Volumes don’t change under a shear.

3. Volume of a mirror image is negative of the volume?

4. If you scale one coordinate by k, the volume is multiplied by k.



Properties of the Determinant
2 × 2 matrix

det

(
1 −2
0 3

)
= 3

volume = 3

Scale: R2 = 1
3
R2

det

(
1 −2
0 1

)
= 1

volume = 1

Row replacement: R1 = R1 + 2R2

det

(
1 0
0 1

)
= 1

volume still = 1



Magical Properties of the Determinant

1. det : {square matrices} → R is the only function satisfying the defining
properties (1)–(4).

2. A is invertible if and only if det(A) 6= 0.

3. If we row reduce A without row scaling, then

det(A) = (−1)#swaps(product of diagonal entries in REF
)
.

4. The determinant can be computed using any cofactor expansion.

5. det(AB) = det(A) det(B) and det(A−1) = det(A)−1.

6. det(A) = det(AT ).

7. | det(A)| is the volume of the parallelepiped defined by the columns of A.

8. If A is an n × n matrix with transformation T (x) = Ax , and S is a subset
of Rn, then the volume of T (S) is | det(A)| times the volume of S . (Even
for curvy shapes S .)

9. The determinant is multi-linear (optional material).
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Computing the Determinant by Row Reduction
Example first

We can use the properties of the determinant and row reduction to compute
the determinant of any matrix!

det

 0 1 0
1 0 1
5 7 −4

 = − det

 1 0 1
0 1 0
5 7 −4

 (swap)

= − det

 1 0 1
0 1 0
0 7 −9

 (‘shear’)

= − det

 1 0 1
0 1 0
0 0 −9

 (‘shear’)

= (−1) · (−9) det

 1 0 1
0 1 0
0 0 1

 (scale)

= (−1) · (−9) det

 1 0 0
0 1 0
0 0 1

 (‘shear’)

= 9 (cube)

The second matrix is ob-
tained from the first matrix
by scaling by −1/9. So the
determinant of the first ma-
trix is −9 times the determi-
nant of the second matrix.



Computing the Determinant by Row Reduction

Saving some work We can stop row reducing when we get to row echelon form.

det

 0 1 0
1 0 1
5 7 −4

 = · · · = − det

 1 0 1
0 1 0
0 0 −9

 = 9.

This is almost always the easiest way to compute the determinant of a
large, complicated matrix, either by hand or by computer.

Cofactor expansion is O(n!) ∼ O(nn√n), row reduction is O(n3).

Row reduction



Extra: Multi-Linearity of the Determinant

Think of det as a function of the columns of an n × n matrix:

det : Rn × Rn × · · · × Rn︸ ︷︷ ︸
n times

−→ R

det(v1, v2, . . . , vn) = det

 | | |
v1 v2 · · · vn
| | |

 .

Multi-linear: For any i and any vectors v1, v2, . . . , vn and v ′i and any scalar c,

det(v1, . . . , vi + v ′i , . . . , vn) = det(v1, . . . , vi , . . . , vn) + det(v1, . . . , v
′
i , . . . , vn)

det(v1, . . . , cvi , . . . , vn) = c det(v1, . . . , vi , . . . , vn).

In words: if column i is a sum of two vectors vi , v
′
i , then the determinant is the

sum of two determinants, one with vi in column i , and one with v ′i in column i .

Proof: just expand cofactors along column i .

I We already knew: Scaling one column by c scales det by c.

I Same properties hold if we replace column by row.

I This only works one column (or row) at a time.



Extra: The Determinant is a Function

We can think of the determinant as a function of the entries of a matrix:

det

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 =
a11a22a33 + a12a23a31 + a13a21a32

− a13a22a31 − a11a23a32 − a12a21a33.

The formula for the determinant of an n × n matrix has n! terms.

When mathematicians encounter a function whose formula is too difficult to
write down, we try to characterize it in terms of its properties.

Not only does object X have property P,
but X is the only one thing that has property P.

P characterizes object X

Other example:

I ex is unique function that has f ′(x) = f (x) and f (0) = 1.



Extra: Why is Property 5 true?

In Lay, there’s a proof using elementary matrices. Here’s another one.

Let B be an n × n matrix. There are two cases:

1. If det(B) = 0, then B is not inverible. So for any matrix A, BA is not
invertible. (Otherwise B−1 = A(BA)−1.) So

det(BA) = 0 = 0 · det(A) = det(B) det(A).

2. If A is invertible, define another function

f : {n × n matrices} −→ R by f (B) =
det(BA)

det(A)
.

Let’s check the defining properties:

1. f (In) = det(InA)/ det(A) = 1.

2–4. Doing a row operation on B and then multiplying by A, does the same row
operation on BA. This is because a row operation is left-multiplication by
an elementary matrix E , and (EB)A = E(AB). Hence f scales like det with
respect to row operations.

By uniqueness, f = det, i.e.,

det(B) = f (B) =
det(AB)

det(A)
so det(A) det(B) = det(AB).


