Good job on the midterm!!

This week is a review from MATH 1553

- Comprehensive notes can be found in http://people.math.gatech.edu/~leslava3/1718S-2802.html
- Selected material at http:

//people.math.gatech.edu/~leslava3/1718S-2802/schedule.html

Sections 3.1-3.2

Determinants

The Idea of Determinants

Let A be an $n \times n$ matrix. Determinants are only for square matrices.

The columns v_1, v_2, \ldots, v_n give you *n* vectors in \mathbb{R}^n . These determine a **parallelepiped** *P*.

Observation: the volume of P is zero \iff the columns are *linearly dependent* (P is "flat") \iff the matrix A is not invertible.

The **determinant** of A will be a number det(A) whose absolute value is the volume of P. In particular, det(A) $\neq 0 \iff A$ is invertible.

Determinants of 2×2 Matrices $_{\text{Revisited}}$

There is a formula in the 2×2 case:

$$\det \begin{pmatrix} \mathsf{a} & \mathsf{b} \\ \mathsf{c} & \mathsf{d} \end{pmatrix} = \mathsf{a}\mathsf{d} - \mathsf{b}\mathsf{c}.$$

What does this have to do with volumes?

$$v_1 = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$
 $v_2 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$

The area of the parallelogram is

$$\mathsf{base} \times \mathsf{height} = 2 \cdot 3 = \left| \mathsf{det} \begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix} \right|.$$

The area of the parallelogram is always |ad - bc|. If v_1 is not on the x-axis: it's a fun geometry problem!

Note: The volume is zero if and only if the columns are collinear

Here's a formula:

$$\det \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{array}{c} a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} \\ -a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} \\ \end{array}$$

How to remember this?

Draw a bigger matrix, repeating the first two columns to the right:

For example,

$$\det \begin{pmatrix} 5 & 1 & 0 \\ -1 & 3 & 2 \\ 4 & 0 & -1 \end{pmatrix} = \begin{vmatrix} 5 & 1 & 0 & 5 & 1 \\ -1 & 3 & 2 & 1 & 3 \\ 4 & 0 & 1 & 4 & 0 \end{vmatrix} = -15 + 8 + 0 - 0 - 0 - 1 = -8$$

Cofactor expansion

Recursive formula: you compute a larger determinant in terms of smaller ones.

Let A be an $n \times n$ matrix.

$$A_{ij} = ij$$
th minor of $A = (n-1) \times (n-1)$ matrix you get by *deleting the ith row and jth column*

 $C_{ij} = ij$ th **cofactor** of $A = (-1)^{i+j} \det A_{ij}$

The signs of the cofactors follow a *checkerboard pattern*:

$$\begin{pmatrix} + & - & + & - \\ - & + & - & + \\ + & - & + & - \\ - & + & - & + \end{pmatrix} \qquad \pm \text{ in the } \textit{ij entry is the sign of } C_{\textit{ij}}$$

Definition

The **determinant** of an $n \times n$ matrix A is

$$\det(A) = \sum_{j=1}^n a_{1j} C_{1j} = a_{11} C_{11} + a_{12} C_{12} + \dots + a_{1n} C_{1n}.$$

This formula is called **cofactor expansion** along the first row.

Example: Cofactor expansion along first row

$$det \begin{pmatrix} 5 & 1 & 0 \\ -1 & 3 & 2 \\ 4 & 0 & -1 \end{pmatrix} = 5 \cdot det \begin{pmatrix} \hline 0 & -1 & -3 & 2 \\ -4 & 0 & -1 \end{pmatrix} - 1 \cdot det \begin{pmatrix} 5 & -1 & 0 \\ -1 & 3 & 2 \\ 4 & 0 & -1 \end{pmatrix} + 0 \cdot det \begin{pmatrix} 5 & -1 & 0 \\ -1 & 3 & 2 \\ 4 & 0 & -1 \end{pmatrix}$$
$$= 5 \cdot det \begin{pmatrix} 3 & 2 \\ 0 & -1 \end{pmatrix} - 1 \cdot det \begin{pmatrix} -1 & 2 \\ 4 & -1 \end{pmatrix} + 0 \cdot det \begin{pmatrix} -1 & 3 \\ 4 & 0 \end{pmatrix}$$
$$= 5 \cdot (-3 - 0) - 1 \cdot (1 - 8)$$
$$= -15 + 7 = -8$$

Cofactor expasion: Specify point of reference...

Recall: the cofactor expansion *along the first row*.

$$\det(A) = \sum_{j=1}^{n} a_{1j} C_{1j} = a_{11} C_{11} + a_{12} C_{12} + \cdots + a_{1n} C_{1n}.$$

Actually, you can expand cofactors along any row or column you like! Good

trick: Use cofactor expansion along a row or a column with a lot of zeros.

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 0 \\ 5 & 9 & 1 \end{pmatrix}$$

It looks easiest to expand along the third column:

$$det A = 0 \cdot det \begin{pmatrix} don't \\ care \end{pmatrix} - 0 \cdot det \begin{pmatrix} don't \\ care \end{pmatrix} + 1 \cdot det \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 0 \\ 5 \end{pmatrix}$$
$$= det \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} = 2 - 1 = 1$$

Poll

Poll

$$det \begin{pmatrix} 1 & 7 & -5 & 14 & 3 & 22 \\ 0 & -2 & -3 & 13 & 11 & 1 \\ 0 & 0 & -1 & -9 & 7 & 18 \\ 0 & 0 & 0 & 3 & 6 & -8 \\ 0 & 0 & 0 & 0 & 1 & -11 \\ 0 & 0 & 0 & 0 & 0 & -1 \end{pmatrix} = ?$$
A. -6 B. -3 C. -2 D. -1 E. 1 F. 2 G. 3 H. 6

If you expand repeatedly along the first column, you get

$$1 \cdot \det \begin{pmatrix} -2 & -3 & 13 & 11 & 1 \\ 0 & -1 & -9 & 7 & 18 \\ 0 & 0 & 3 & 6 & -8 \\ 0 & 0 & 0 & 1 & -11 \\ 0 & 0 & 0 & 0 & -1 \end{pmatrix} = 1 \cdot (-2) \cdot \det \begin{pmatrix} -1 & -9 & 7 & -18 \\ 0 & 3 & 6 & -8 \\ 0 & 0 & 1 & -11 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
$$= 1 \cdot (-2) \cdot (-1) \cdot \det \begin{pmatrix} 3 & 6 & -8 \\ 0 & 1 & -11 \\ 0 & 0 & -1 \end{pmatrix} = 1 \cdot (-2) \cdot (-1) \cdot 3 \cdot \det \begin{pmatrix} 1 & -11 \\ 0 & -1 \end{pmatrix}$$
$$= 1 \cdot (-2) \cdot (-1) \cdot 3 \cdot 1 \cdot (-1) = -6$$

Theorem

The determinant of an upper-triangular matrix is the product of the diagonal entries:

$$\det \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{pmatrix} = a_{11}a_{22}a_{33}\cdots a_{nn}.$$

Trick: Expand along the last row This works for any matrix that is *upper-triangular* (all entries below the main diagonal are zero).

The same is true for lower-triangular matrices. (Repeatedly expand along the first row.)

Linear Transformations and volumen

If S is the *unit cube*, then T(S) is the parallelepiped formed by the columns of A. The volumen changes according to det(A).

For curvy regions: break S up into *tiny cubes*; each one is scaled by $|\det(A)|$. Then use *calculus* to reduce to the previous situation!

Defining the Determinant in Terms of its Properties

Definition The **determinant** is a function

det: {square matrices} $\longrightarrow \mathbf{R}$

with the following defining properties:

- 1. $det(I_n) = 1$
- 2. If we do a *row replacement* on a matrix, the determinant does not change.
- 3. If we swap two rows of a matrix, the determinant scales by -1.
- 4. If we scale a row of a matrix by k, the determinant scales by k.

Why would we think of these properties? This is how volumes work!

- 1. The volume of the *unit cube* is 1.
- 2. Volumes don't change under a shear.
- 3. Volume of a *mirror image* is negative of the volume?
- 4. If you *scale one coordinate* by *k*, the volume is multiplied by *k*.

Properties of the Determinant

 $2 \times 2 \text{ matrix}$

$$det \begin{pmatrix} 1 & -2 \\ 0 & 3 \end{pmatrix} = 3$$

Scale:
$$R_2 = \frac{1}{3}R_2$$

det $\begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} = 1$

Row replacement: $R_1 = R_1 + 2R_2$

$$\det \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 1$$

- 1. det: {square matrices} $\rightarrow \mathbf{R}$ is the only function satisfying the defining properties (1)–(4).
- 2. A is invertible if and only if $det(A) \neq 0$.
- 3. If we row reduce A without row scaling, then

 $det(A) = (-1)^{\#swaps}$ (product of diagonal entries in REF).

- 4. The determinant can be computed using any cofactor expansion.
- 5. det(AB) = det(A) det(B) and $det(A^{-1}) = det(A)^{-1}$.
- 6. $det(A) = det(A^T)$.
- 7. $|\det(A)|$ is the volume of the parallelepiped defined by the columns of A.
- If A is an n × n matrix with transformation T(x) = Ax, and S is a subset of Rⁿ, then the volume of T(S) is |det(A)| times the volume of S. (Even for curvy shapes S.)
- 9. The determinant is multi-linear (optional material).

Computing the Determinant by Row Reduction Example first

The

nant

We can use the properties of the determinant and row reduction to compute the determinant of any matrix!

$$det \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 5 & 7 & -4 \end{pmatrix} = -det \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 5 & 7 & -4 \end{pmatrix}$$
(swap)
$$= -det \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 7 & -9 \end{pmatrix}$$
('shear')
The second matrix is ob-
tained from the first matrix
by scaling by -1/9. So the
determinant of the first ma-
trix is -9 times the determi-
nant of the second matrix.
$$= (-1) \cdot (-9) det \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
(scale)
$$= (-1) \cdot (-9) det \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
(scale)
$$= (-1) \cdot (-9) det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
(scale)
$$= 9$$

Computing the Determinant by Row Reduction

Saving some work We can stop row reducing when we get to row echelon form.

$$\det \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 5 & 7 & -4 \end{pmatrix} = \cdots = -\det \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & -9 \end{pmatrix} = 9.$$

Row reduction

This is almost always the easiest way to compute the determinant of a large, complicated matrix, either by hand or by computer.

Cofactor expansion is $O(n!) \sim O(n^n \sqrt{n})$, row reduction is $O(n^3)$.

Extra: Multi-Linearity of the Determinant

Think of det as a function of the *columns* of an $n \times n$ matrix:

$$\det: \underbrace{\mathbf{R}^n \times \mathbf{R}^n \times \cdots \times \mathbf{R}^n}_{n \text{ times}} \longrightarrow \mathbf{R}$$
$$\det(v_1, v_2, \dots, v_n) = \det \begin{pmatrix} | & | & | \\ v_1 & v_2 & \cdots & v_n \\ | & | & | & | \end{pmatrix}.$$

Multi-linear: For any *i* and any vectors v_1, v_2, \ldots, v_n and v'_i and any scalar *c*,

$$det(v_1,\ldots,v_i+v'_i,\ldots,v_n) = det(v_1,\ldots,v_i,\ldots,v_n) + det(v_1,\ldots,v'_i,\ldots,v_n)$$
$$det(v_1,\ldots,cv_i,\ldots,v_n) = c det(v_1,\ldots,v_i,\ldots,v_n).$$

In words: if column *i* is a sum of two vectors v_i , v'_i , then the determinant is the sum of two determinants, one with v_i in column *i*, and one with v'_i in column *i*. Proof: just expand cofactors along column *i*.

- ▶ We already knew: Scaling *one column* by *c* scales det by *c*.
- Same properties hold if we replace column by row.
- This only works one column (or row) at a time.

We can think of the *determinant as a function* of the entries of a matrix:

$$\det \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \frac{a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}}{-a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}}.$$

The formula for the determinant of an $n \times n$ matrix has n! terms.

When mathematicians encounter a function whose *formula is too difficult* to write down, we try to **characterize it in terms of its properties**.

 P characterizes object X

 Not only does object X have property P,

 but X is the only one thing that has property P.

Other example:

• e^x is unique function that has f'(x) = f(x) and f(0) = 1.

Extra: Why is Property 5 true?

In Lay, there's a proof using elementary matrices. Here's another one.

Let *B* be an $n \times n$ matrix. There are two cases:

 If det(B) = 0, then B is not inverible. So for any matrix A, BA is not invertible. (Otherwise B⁻¹ = A(BA)⁻¹.) So

$$\det(BA) = 0 = 0 \cdot \det(A) = \det(B) \det(A).$$

2. If A is invertible, define another function

$$f: \{n \times n \text{ matrices}\} \longrightarrow \mathbf{R} \quad \text{by} \quad f(B) = \frac{\det(BA)}{\det(A)}.$$

Let's check the defining properties:

- 1. $f(I_n) = \det(I_n A) / \det(A) = 1$.
- 2-4. Doing a row operation on *B* and then multiplying by *A*, does the same row operation on *BA*. This is because a row operation is left-multiplication by an elementary matrix *E*, and (EB)A = E(AB). Hence *f* scales like det with respect to row operations.

By uniqueness, f = det, i.e.,

$$\det(B) = f(B) = \frac{\det(AB)}{\det(A)}$$
 so $\det(A)\det(B) = \det(AB)$.