
Section 2.8

Subspaces of Rn



Subspaces: Motivation and examples

Example

The subset {0}: this subspace contains only one vector.

Example

A line L through the origin:
this contains the span of any vector in
L.

L

Example

A plane P through the origin:
this contains the span of any two vec-

tors in P.

P

Example

All of Rn:
this contains 0, and is closed under addition and scalar multiplication.

I The span was our first example of subspace: Span{v1, . . . , vp}.
I But in general, subspaces are not defined by ‘the generating vectors’



The Definition of Subspace

Definition
A subspace of Rn is a subset V of Rn satisfying:

1. The zero vector is in V . “not empty”

2. If u and v are in V , then u + v is also in V . “closed under addition”

3. If u is in V and c is in R, then cu is in V . “closed under × scalars”

Consequences of definition:

I By (3), if v is in V , then so is the line through v .

I By (2),(3), if u, v are in V , then so is xu + yv , for all x , y ∈ R.

A subspace V contains the span of any set of vectors in V .



Non-Examples

Purple: wanna-be ‘subspaces’
Red vectors: would have to be in the subset too.

Color code

Non-Example

Any set that doesn’t contain the origin
Fails condition (1).

Non-Example

The first quadrant in R2.
Fails close under × scalar only.

Non-Example

A line union a plane in R3.
Fails close under addition only.



Poll

Why is the first quadrant of R2 not a subspace? Which property(ies)
does it fail?

Q =

{(
a1
a2

)
: a1 ≥ 0, a2 ≥ 0

}
Poll

1. The zero vector is contained in the first quadrant: "
2. It is closed under addition:

(
a1
a2

)
,

(
b1
b2

)
∈ Q then

a1 + b1 ≥ 0 a2 + b2 ≥ 0⇒
(
a1 + b1
a2 + b2

)
∈ Q "

3. It is not closed under × scalar: let a1, a2 > 0 and c < 0 then

c · a1 < 0 c · a2 < 0⇒
(
a1
a2

)
∈ Q, c

(
a1
a2

)
/∈ Q %



Basis and dimension of a Subspace

Every span is a subspace but also every subspace is a span.

How would you find the generating vectors?

!!!

Definition
Let V be a subspace of Rn. A basis of V is a set of vectors {v1, v2, . . . , vm} in
V such that:

1. V = Span{v1, v2, . . . , vm}, and

2. {v1, v2, . . . , vm} is linearly independent.

The number of vectors in a basis is the dimension of V , and is written dimV .

A subspace has many different bases, but they all have the same
number of vectors (see the exercises in §2.9).

Important



Bases of R2

Question
What is a basis for R2?

We need two vectors that span R2 and are lin-
early independent. {e1, e2} is one basis.

1. They span:
(
a
b

)
= ae1 + be2.

2. They are linearly independent.

e1

e2

Question
What is another basis for R2?

Any two nonzero vectors that are not collinear.{(
1
0

)
,
(
1
1

)}
is also a basis.

1. They span: ( 1 1
0 1 ) has a pivot in every row.

2. They are linearly independent: ( 1 1
0 1 ) has a

pivot in every column.

(1
0

)
(1
1

)



Bases of Rn

The unit coordinate vectors

e1 =


1
0
...
0
0

 , e2 =


0
1
...
0
0

 , . . . , en−1 =


0
0
...
1
0

 , en =


0
0
...
0
1


are a basis for Rn.

1. They span: In has a pivot in every row.

The identity matrix has columns e1, e2, . . . , en.

2. They are linearly independent: In has a pivot in every column.

{v1, v2, . . . , vn} is a basis for Rn if and only if the matrix

A =

 | | |
v1 v2 · · · vn
| | |


has a pivot in every row and every column, i.e. if A is invertible.

In general:



Basis of a Subspace
Example

Example

Let

V =


x
y
z

 in R3
∣∣ x + 3y + z = 0

 B =


−3

1
0

 ,

 0
1
−3

 .

Verify that B is a basis for V .

0. In V : both vectors satisfy the equation, so are in V

−3 + 3(1) + 0 = 0 and 0 + 3(1) + (−3) = 0.

1. Span: If

x
y
z

 is in V , then y = − 1
3
(x + z), sox

y
z

 = −x

3

−3
1
0

− z

3

 0
1
−3

 .

2. Linearly independent:

c1

−3
1
0

+ c2

 0
1
−3

 = 0 =⇒

 −3c1
c1 + c2
−3c2

 =

0
0
0

 =⇒ c1 = c2 = 0.



Subspaces of a transformation

An m × n matrix A naturally gives rise to two subspaces.

Definition

The column space of A is the subspace of Rm spanned by the columns of
A. It is written ColA.

The null space of A is a subspace of Rn containing the set of all solutions
of the homogeneous equation Ax = 0:

NulA =
{
x in Rn | Ax = 0

}
.

Note: The column space is the range of the transformation T (x) = Ax .

The vectors in the parametric vector form of the general solution
to Ax = 0 always form a basis for NulA.

Basis Nul A

The pivot columns of A always form a basis for ColA.

Basis Col A



Column Space and Null Space
Example

Let A =

 1 1
1 1
1 1

.

Let’s compute the column space:

ColA = Span


1

1
1

 ,

1
1
1

 = Span


1

1
1

 .

This is a line in R3.

ColA

Let’s compute the null space:

A

(
x
y

)
=

x + y
x + y
x + y

 .

This zero if and only if x = −y . So

NulA =

{(
x
y

)
in R2 | y = −x

}
.

This defines a line in R2:

NulA



Section 2.9

Dimension and Rank



The Rank Theorem

Definition
The rank of a matrix A, written rankA, is the dimension of the range of
T (x) = Ax (dimension of ColA).

Observe:
rankA = dim ColA = the number of columns with pivots

dim NulA = the number of free variables

= the number of columns without pivots.

Rank Theorem
If A is an m × n matrix, then

rankA + dim NulA= n = the number of columns of A.

Basis Theorem
Let V be a subspace of dimension m. Then:

I Any m linearly independent vectors in V form a basis for V .

I Any m vectors that span V form a basis for V .



The Rank Theorem
Example

1 2 0 −1
−2 −3 4 5
2 4 0 −2

  1 0 −8 −7
0 1 4 3
0 0 0 0

 rref
A =

basis of ColAbasis of ColA free variables

A basis for ColA is 
 1
−2

2

 ,

 2
−3

4

 ,

so rankA = dim ColA = 2.

Since there are two free variables x3, x4, the parametric vector form for the
solutions to Ax = 0 is

x = x3


8
−4

1
0

+ x4


7
−3

0
1

 basis for NulA




8
−4

1
0

 ,


7
−3

0
1


 .

Thus dim NulA = 2.

The Rank Theorem says 2 + 2 = 4.



Bases as Coordinate Systems
Summary

If B = {v1, v2, . . . , vm} is a basis for a subspace V and x is in V , then

[x ]B =


c1
c2
...
cm

 means x = c1v1 + c2v2 + · · ·+ cmvm.

Finding the B-coordinates for x means solving the vector equation

x = c1v1 + c2v2 + · · ·+ cmvm

in the unknowns c1, c2, . . . , cm. This (usually) means row reducing the
augmented matrix  | | | |

v1 v2 · · · vm x
| | | |

 .

Question: What happens if you try to find the B-coordinates of x not in V ?
You end up with an inconsistent system: x = c1v1 + c2v2 + · · ·+ cmvm has no
solution.



Bases as Coordinate Systems
Picture

Let

v1 =


2
−1

0
1

 v2 =


1
0
0
−1


These form a basis B for the plane

V = Span{v1, v2}in R4.

u1

u2

u3

u4

v1

v2

V

Question: Estimate the B-coordinates of these vectors:

[u1]B =

(
1
1

)
[u2]B =

(
−1

1
2

)
[u3]B =

(
3
2

− 1
2

)
[u4]B =

(
0
3
2

)
Remark
Make sense of V as two-dim: Choose a basis B and use B-coordinates.
Careful: The coordinates give only the coefficients of a linear combination
using such basis vectors.



Bases as Coordinate Systems
Example

Let v1 =

2
3
2

 , v2 =

−1
1
1

 , v3 =

2
8
6

 , V = Span{v1, v2, v3}.

Question: Find a basis for V .
V is the column span of the matrix

A =

 2 −1 2
3 1 8
2 1 6

 row reduce

 1 0 2
0 1 2
0 0 0

 .

A basis for the column span is formed by the pivot columns: B = {v1, v2}.

Question: Find the B-coordinates of x =

 4
11
8

.

We have to solve x = c1v1 + c2v2. 2 −1 4
3 1 11
2 1 8

 row reduce

 1 0 3
0 1 2
0 0 0


So x = 3v1 + 2v2 and [x ]B =

(
3
2

)
.



The Invertible Matrix Theorem
Addenda

Using the Rank Theorem and the Basis Theorem, we have new interpretations
of the meaning of invertibility.

The Invertible Matrix Theorem
Let A be an n × n matrix, and let T : Rn → Rn be the linear transformation
T (x) = Ax . The following statements are equivalent.

1. A is invertible.

2. T is invertible.

3. A is row equivalent to In.

4. A has n pivots.

5. Ax = 0 has only the trivial solution.

6. The columns of A are linearly independent.

7. T is one-to-one.

8. Ax = b is consistent for all b in Rn.

9. The columns of A span Rn.

10. T is onto.

11. A has a left inverse (there exists B such that BA = In).

12. A has a right inverse (there exists B such that AB = In).

13. AT is invertible.

14. The columns of A form a basis for Rn.

15. ColA = Rn.

16. dim ColA = n.

17. rankA = n.

18. NulA = {0}.
19. dim NulA = 0.



Extra: Why coefficients are unique

Lemma like a theorem, but less important

If B = {v1, v2, . . . , vm} is a basis for a subspace V , then any vector x in V can
be written as a linear combination

x = c1v1 + c2v2 + · · ·+ cmvm

for unique coefficients c1, c2, . . . , cm.

Proof. We know x is a linear combination of the vi (they span V ). Suppose
that we can write x as a linear combination with different lists of coefficients:

x = c1v1 + c2v2 + · · ·+ cmvm

x = c ′1v1 + c ′2v2 + · · ·+ c ′mvm

Subtracting:

0 = x − x = (c1 − c ′1)v1 + (c2 − c ′2)v2 + · · ·+ (cm − c ′m)vm

Since v1, v2, . . . , vm are linearly independent, they only have the trivial linear
dependence relation. That means each ci − c ′i = 0, or ci = c ′i .



Extra: Subspaces
Summary

I Is it a span?

I Is it all of Rn or the zero subspace {0}?
Can it be written as

I a span?

I the column space of a matrix?

I the null space of a matrix?

I a type of subspace that we’ll learn about later (eigenspaces, . . . )?

If so, then it’s automatically a subspace.

If all else fails:

I Can you verify directly that it satisfies the three defining
properties?

How do you check if a subset is a subspace?


