Section 2.8

Subspaces of \mathbf{R}^n

Example

The subset $\{0\}$: this subspace contains only one vector.

Example

A line *L* through the origin: this contains the span of any vector in *L*.

Example

A plane *P* through the origin: this contains the span of any two vectors in *P*.

Example

All of **R**ⁿ:

this contains 0, and is closed under addition and scalar multiplication.

- The span was our first example of subspace: $Span\{v_1, \ldots, v_p\}$.
- But in general, subspaces are not defined by 'the generating vectors'

Definition

A subspace of \mathbf{R}^n is a subset V of \mathbf{R}^n satisfying:

- 1. The zero vector is in V. "not empty" 2. If u and v are in V, then u + v is also in V. "closed under addition" "closed under \times scalars"
- 3. If u is in V and c is in **R**, then cu is in V.

Consequences of definition:

- By (3), if v is in V, then so is the line through v.
- ▶ By (2),(3), if u, v are in V, then so is xu + yv, for all $x, y \in \mathbf{R}$.

A subspace V contains the span of any set of vectors in V.

Non-Examples

Color code

Purple: wanna-be 'subspaces' Red vectors: would have to be in the subset too.

Non-Example

Any set that *doesn't contain the origin* Fails condition (1).

Non-Example

The first quadrant in \mathbf{R}^2 . Fails close under \times scalar only.

Non-Example

A line union a plane in \mathbb{R}^3 . Fails close under addition only.

1. The zero vector is contained in the first quadrant: 2. It is closed under addition: $\begin{pmatrix} a_1 \\ a_2 \end{pmatrix}, \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \in Q$ then

$$a_1+b_1\geq 0$$
 $a_2+b_2\geq 0\Rightarrow egin{pmatrix} a_1+b_1\ a_2+b_2\end{pmatrix}\in Q$

3. It is not closed under \times scalar: let $a_1, a_2 > 0$ and c < 0 then

$$c \cdot a_1 < 0 \quad c \cdot a_2 < 0 \Rightarrow \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \in Q, \quad c \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \notin Q$$

Every span is a subspace but also every subspace is a span.

How would you find the generating vectors?

Definition

Let V be a subspace of \mathbb{R}^n . A basis of V is a set of vectors $\{v_1, v_2, \ldots, v_m\}$ in V such that:

- 1. $V = \text{Span}\{v_1, v_2, \dots, v_m\}$, and
- 2. $\{v_1, v_2, \ldots, v_m\}$ is linearly independent.

The number of vectors in a basis is the **dimension** of V, and is written dim V.

Important

A subspace has many *different bases*, but they all have the *same* number of vectors (see the exercises in $\S2.9$).

Bases of \mathbf{R}^2

Question What is a basis for \mathbf{R}^2 ?

We need two vectors that span \mathbb{R}^2 and are *linearly independent*. $\{e_1, e_2\}$ is one basis.

- 1. They span: $\binom{a}{b} = ae_1 + be_2$.
- 2. They are linearly independent.

Question

What is another basis for \mathbf{R}^2 ?

Any two *nonzero vectors* that are *not collinear*. $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$ is also a basis.

- 1. They span: $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ has a pivot in every row.
- 2. They are linearly independent: $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ has a pivot in every column.

Bases of **R**ⁿ

The unit coordinate vectors

$$e_{1} = \begin{pmatrix} 1\\0\\\vdots\\0\\0 \end{pmatrix}, \quad e_{2} = \begin{pmatrix} 0\\1\\\vdots\\0\\0 \end{pmatrix}, \quad \dots, \quad e_{n-1} = \begin{pmatrix} 0\\0\\\vdots\\1\\0 \end{pmatrix}, \quad e_{n} = \begin{pmatrix} 0\\0\\\vdots\\1\\0 \end{pmatrix}$$

are a basis for \mathbb{R}^n . The identity matrix has columns e_1, e_2, \ldots, e_n .

1. They span: I_n has a pivot in every row.

2. They are linearly independent: I_n has a pivot in every column.

In general: $\{v_1, v_2, \dots, v_n\} \text{ is a basis for } \mathbf{R}^n \text{ if and only if the matrix}$ $A = \begin{pmatrix} | & | & | \\ v_1 & v_2 & \cdots & v_n \\ | & | & | \end{pmatrix}$ has a pivot in every row and every column, i.e. if *A* is invertible.

Basis of a Subspace Example

Example

Let

$$V = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ in } \mathbf{R}^3 \mid x + 3y + z = 0 \right\} \qquad \mathcal{B} = \left\{ \begin{pmatrix} -3 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix} \right\}.$$

Verify that \mathcal{B} is a basis for V.

0. In V: both vectors satisfy the equation, so are in V

$$-3 + 3(1) + 0 = 0 \quad \text{and} \quad 0 + 3(1) + (-3) = 0.$$

1. Span: If $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ is in V, then $y = -\frac{1}{3}(x + z)$, so
 $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = -\frac{x}{3} \begin{pmatrix} -3 \\ 1 \\ 0 \end{pmatrix} - \frac{z}{3} \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix}.$

2. Linearly independent:

$$c_1\begin{pmatrix} -3\\1\\0 \end{pmatrix} + c_2\begin{pmatrix} 0\\1\\-3 \end{pmatrix} = 0 \implies \begin{pmatrix} -3c_1\\c_1+c_2\\-3c_2 \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix} \implies c_1 = c_2 = 0.$$

An $m \times n$ matrix A naturally gives rise to *two* subspaces.

Definition

The *column space* of A is the subspace of \mathbf{R}^m spanned by the columns of A. It is *written* Col A.

The **null space** of A is a subspace of \mathbf{R}^n containing the set of all solutions of the homogeneous equation Ax = 0:

$$\operatorname{Nul} A = \{x \text{ in } \mathbf{R}^n \mid Ax = \mathbf{0}\}.$$

Note: The column space is the range of the transformation T(x) = Ax.

Basis Nul A

The vectors in the parametric vector form of the general solution to Ax = 0 always form a basis for Nul A.

Column Space and Null Space Example

Let
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$$
.

Let's compute the *column space*:

$$\operatorname{Col} A = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\} = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}.$$

.

Col A

This is a line in \mathbb{R}^3 .

Let's compute the **null space**:

$$A\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} x+y\\ x+y\\ x+y \end{pmatrix}.$$

This zero if and only if $x = -y$. So
Nul $A = \left\{ \begin{pmatrix} x\\ y \end{pmatrix}$ in $\mathbb{R}^2 \mid y = -x \right\}$

This defines a line in R²:

Section 2.9

Dimension and Rank

Definition

The **rank** of a matrix A, written rank A, is the dimension of the range of T(x) = Ax (dimension of Col A).

Observe:

rank $A = \dim \operatorname{Col} A =$ the number of columns with pivots

dim Nul A = the number of free variables

= the number of columns without pivots.

Rank Theorem If A is an $m \times n$ matrix, then

rank A + dim Nul A= n = the number of columns of A.

Basis Theorem

Let V be a subspace of dimension m. Then:

- Any *m* linearly independent vectors in *V* form *a basis* for *V*.
- Any *m* vectors that span *V* form *a basis* for *V*.

The Rank Theorem Example

$$A = \begin{pmatrix} 1 & 2 & 0 & -1 \\ -2 & -3 & 4 & 5 \\ 2 & 4 & 0 & -2 \end{pmatrix} \xrightarrow{\text{rref}} \begin{pmatrix} 1 & 0 & -8 & -7 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

basis of Col A free variables

A basis for Col A is

$$\left\{ \begin{pmatrix} 1\\-2\\2 \end{pmatrix}, \begin{pmatrix} 2\\-3\\4 \end{pmatrix} \right\},$$

so rank $A = \dim \operatorname{Col} A = 2$.

Since there are two free variables x_3 , x_4 , the parametric vector form for the solutions to Ax = 0 is

$$x = x_3 \begin{pmatrix} 8 \\ -4 \\ 1 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 7 \\ -3 \\ 0 \\ 1 \end{pmatrix} \xrightarrow{\text{basis for Nul } A} \left\{ \begin{pmatrix} 8 \\ -4 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 7 \\ -3 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

Thus dim Nul A = 2.

The *Rank Theorem* says 2 + 2 = 4.

Bases as Coordinate Systems

Summary

If $\mathcal{B} = \{v_1, v_2, \dots, v_m\}$ is a basis for a subspace V and x is in V, then $[x]_{\mathcal{B}} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_m \end{pmatrix} \quad \text{means} \quad x = c_1 v_1 + c_2 v_2 + \dots + c_m v_m.$ Finding the \mathcal{B} -coordinates for x means solving the vector equation $x = c_1 v_1 + c_2 v_2 + \cdots + c_m v_m$ in the unknowns c_1, c_2, \ldots, c_m . This (usually) means row reducing the augmented matrix $\left(\begin{array}{cccccccc} | & | & | & | & | \\ v_1 & v_2 & \cdots & v_m & | \\ | & | & | & | & | \end{array}\right).$

Question: What happens if you try to find the \mathcal{B} -coordinates of x not in V? You end up with an *inconsistent system*: $x = c_1v_1 + c_2v_2 + \cdots + c_mv_m$ has no solution.

Bases as Coordinate Systems

Picture

Let

$$v_1 = \begin{pmatrix} 2 \\ -1 \\ 0 \\ 1 \end{pmatrix}$$
 $v_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \end{pmatrix}$

These form a basis \mathcal{B} for the plane

$$V = \operatorname{Span}\{v_1, v_2\} \text{in } \mathbf{R}^4.$$

Question: Estimate the *B*-coordinates of these vectors:

$$[\mathbf{u}_1]_{\mathcal{B}} = \begin{pmatrix} 1\\1 \end{pmatrix} \qquad [\mathbf{u}_2]_{\mathcal{B}} = \begin{pmatrix} -1\\\frac{1}{2} \end{pmatrix} \qquad [\mathbf{u}_3]_{\mathcal{B}} = \begin{pmatrix} \frac{3}{2}\\-\frac{1}{2} \end{pmatrix} \qquad [\mathbf{u}_4]_{\mathcal{B}} = \begin{pmatrix} 0\\\frac{3}{2} \end{pmatrix}$$

Remark

Make sense of V as two-dim: Choose a basis \mathcal{B} and use \mathcal{B} -coordinates. Careful: The coordinates give *only the coefficients* of a linear combination *using such basis vectors*.

Bases as Coordinate Systems Example

Let
$$v_1 = \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$, $v_3 = \begin{pmatrix} 2 \\ 8 \\ 6 \end{pmatrix}$, $V = \text{Span}\{v_1, v_2, v_3\}$.

Question: Find a basis for V. V is the column span of the matrix

$$A = \begin{pmatrix} 2 & -1 & 2 \\ 3 & 1 & 8 \\ 2 & 1 & 6 \end{pmatrix} \xrightarrow{\text{row reduce}} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}.$$

A basis for the column span is formed by the pivot columns: $\mathcal{B} = \{v_1, v_2\}$.

Question: Find the
$$\mathcal{B}$$
-coordinates of $x = \begin{pmatrix} 4 \\ 11 \\ 8 \end{pmatrix}$.

We have to solve $x = c_1 v_1 + c_2 v_2$.

$$\begin{pmatrix} 2 & -1 & | & 4 \\ 3 & 1 & | & 11 \\ 2 & 1 & | & 8 \end{pmatrix} \xrightarrow{\text{row reduce}} \begin{pmatrix} 1 & 0 & | & 3 \\ 0 & 1 & | & 2 \\ 0 & 0 & | & 0 \end{pmatrix}$$

So $x = 3v_1 + 2v_2$ and $[x]_{\mathcal{B}} = \binom{3}{2}$.

The Invertible Matrix Theorem

Addenda

Using the *Rank Theorem* and the *Basis Theorem*, we have new interpretations of the **meaning of invertibility**.

The Invertible Matrix Theorem

Let A be an $n \times n$ matrix, and let $T : \mathbf{R}^n \to \mathbf{R}^n$ be the linear transformation T(x) = Ax. The following statements are equivalent.

1. A is invertible.

- 2. T is invertible.
- 3. A is row equivalent to I_n .
- 4. A has n pivots.
- 5. Ax = 0 has only the trivial solution.
- 6. The columns of A are linearly independent.
- 7. T is one-to-one.

- 8. Ax = b is consistent for all b in \mathbb{R}^n .
- 9. The columns of A span \mathbb{R}^n .
- 10. T is onto.
- 11. A has a left inverse (there exists B such that $BA = I_n$).
- 12. A has a right inverse (there exists B such that $AB = I_n$).
- 13. A^T is invertible.
- 14. The columns of A form a basis for \mathbf{R}^n .
- **15**. Col $A = \mathbf{R}^{n}$.
- 16. dim Col A = n.
- 17. rank A = n.
- 18. Nul $A = \{0\}$.
- **19**. dim Nul A = 0.

Lemma like a theorem, but less important If $\mathcal{B} = \{v_1, v_2, \dots, v_m\}$ is a basis for a subspace V, then any vector x in V can be written as a linear combination

$$x = c_1 v_1 + c_2 v_2 + \cdots + c_m v_m$$

for unique coefficients c_1, c_2, \ldots, c_m .

Proof. We know x is a linear combination of the v_i (they span V). Suppose that we can write x as a linear combination with different lists of coefficients:

$$x = c_1 v_1 + c_2 v_2 + \dots + c_m v_m$$

$$x = c'_1 v_1 + c'_2 v_2 + \dots + c'_m v_m$$

Subtracting:

$$0 = x - x = (c_1 - c_1')v_1 + (c_2 - c_2')v_2 + \dots + (c_m - c_m')v_m$$

Since v_1, v_2, \ldots, v_m are linearly independent, they only have the trivial linear dependence relation. That means each $c_i - c'_i = 0$, or $c_i = c'_i$.

- Is it a span?
- ▶ Is it all of Rⁿ or the zero subspace {0}?

Can it be written as

- a span?
- the column space of a matrix?
- the null space of a matrix?
- ▶ a type of subspace that we'll learn about later (eigenspaces, ...)?

If so, then it's automatically a subspace.

If all else fails:

Can you verify directly that it satisfies the three defining properties?