Section 2.8

Subspaces of \mathbf{R}^{n}

Subspaces: Motivation and examples

Example

The subset $\{0\}$: this subspace contains only one vector.
Example
A line L through the origin:
this contains the span of any vector in
L.

Example
A plane P through the origin:
this contains the span of any two vectors in P.

Example
All of \mathbf{R}^{n} :
this contains 0 , and is closed under addition and scalar multiplication.

- The span was our first example of subspace: $\operatorname{Span}\left\{v_{1}, \ldots, v_{p}\right\}$.
- But in general, subspaces are not defined by 'the generating vectors'

The Definition of Subspace

Definition

A subspace of \mathbf{R}^{n} is a subset V of \mathbf{R}^{n} satisfying:

1. The zero vector is in V. "not empty"
2. If u and v are in V, then $u+v$ is also in V.
3. If u is in V and c is in \mathbf{R}, then $c u$ is in V.
"closed under addition"
"closed under \times scalars"

Consequences of definition:

- By (3), if v is in V, then so is the line through v.
- By (2),(3), if u, v are in V, then so is $x u+y v$, for all $x, y \in \mathbf{R}$.

$$
\text { A subspace } V \text { contains the span of any set of vectors in } V \text {. }
$$

Non-Examples

Color code
Purple: wanna-be 'subspaces'
Red vectors: would have to be in the subset too.

Non-Example
Any set that doesn't contain the origin
Fails condition (1).

Non-Example
The first quadrant in \mathbf{R}^{2}.
Fails close under \times scalar only.

Non-Example
A line union a plane in \mathbf{R}^{3}.
Fails close under addition only.

Poll

Poll

Why is the first quadrant of \mathbf{R}^{2} not a subspace? Which property(ies) does it fail?

$$
Q=\left\{\binom{a_{1}}{a_{2}}: a_{1} \geq 0, a_{2} \geq 0\right\}
$$

1. The zero vector is contained in the first quadrant:
2. It is closed under addition: $\binom{a_{1}}{a_{2}},\binom{b_{1}}{b_{2}} \in Q$ then

$$
a_{1}+b_{1} \geq 0 \quad a_{2}+b_{2} \geq 0 \Rightarrow\binom{a_{1}+b_{1}}{a_{2}+b_{2}} \in Q
$$

3. It is not closed under \times scalar: let $a_{1}, a_{2}>0$ and $c<0$ then

$$
c \cdot a_{1}<0 \quad c \cdot a_{2}<0 \Rightarrow\binom{a_{1}}{a_{2}} \in Q, \quad c\binom{a_{1}}{a_{2}} \notin Q
$$

Basis and dimension of a Subspace

Every span is a subspace but also every subspace is a span.
How would you find the generating vectors?

Definition

Let V be a subspace of \mathbf{R}^{n}. A basis of V is a set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ in V such that:

1. $V=\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$, and
2. $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ is linearly independent.

The number of vectors in a basis is the dimension of V, and is written $\operatorname{dim} V$.

Important

A subspace has many different bases, but they all have the same number of vectors (see the exercises in §2.9).

Bases of \mathbf{R}^{2}

Question

What is a basis for \mathbf{R}^{2} ?
We need two vectors that span \mathbf{R}^{2} and are linearly independent. $\left\{e_{1}, e_{2}\right\}$ is one basis.

1. They span: $\binom{a}{b}=a e_{1}+b e_{2}$.
2. They are linearly independent.

Question

What is another basis for \mathbf{R}^{2} ?
Any two nonzero vectors that are not collinear. $\left\{\binom{1}{0},\binom{1}{1}\right\}$ is also a basis.

1. They span: $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ has a pivot in every row.
2. They are linearly independent: $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ has a pivot in every column.

Bases of \mathbf{R}^{n}

The unit coordinate vectors

$$
e_{1}=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right), \quad e_{2}=\left(\begin{array}{c}
0 \\
1 \\
\vdots \\
0 \\
0
\end{array}\right), \quad \ldots, \quad e_{n-1}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
1 \\
0
\end{array}\right), \quad e_{n}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right)
$$

are a basis for \mathbf{R}^{n} \qquad The identity matrix has columns $e_{1}, e_{2}, \ldots, e_{n}$.

1. They span: I_{n} has a pivot in every row.
2. They are linearly independent: I_{n} has a pivot in every column.

In general:
$\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for \mathbf{R}^{n} if and only if the matrix

$$
A=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{n} \\
\mid & \mid & & \mid
\end{array}\right)
$$

has a pivot in every row and every column, i.e. if A is invertible.

Basis of a Subspace

Example

Example

Let

$$
V=\left\{\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \text { in } \mathbf{R}^{3} \mid x+3 y+z=0\right\} \quad \mathcal{B}=\left\{\left(\begin{array}{c}
-3 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
1 \\
-3
\end{array}\right)\right\}
$$

Verify that \mathcal{B} is a basis for V.
0 . In V : both vectors satisfy the equation, so are in V

$$
-3+3(1)+0=0 \quad \text { and } \quad 0+3(1)+(-3)=0
$$

1. Span: If $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ is in V, then $y=-\frac{1}{3}(x+z)$, so

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=-\frac{x}{3}\left(\begin{array}{c}
-3 \\
1 \\
0
\end{array}\right)-\frac{z}{3}\left(\begin{array}{c}
0 \\
1 \\
-3
\end{array}\right)
$$

2. Linearly independent:

$$
c_{1}\left(\begin{array}{c}
-3 \\
1 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{c}
0 \\
1 \\
-3
\end{array}\right)=0 \Longrightarrow\left(\begin{array}{c}
-3 c_{1} \\
c_{1}+c_{2} \\
-3 c_{2}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Longrightarrow c_{1}=c_{2}=0
$$

Subspaces of a transformation

An $m \times n$ matrix A naturally gives rise to two subspaces.

Definition

The column space of A is the subspace of \mathbf{R}^{m} spanned by the columns of A. It is written $\operatorname{Col} A$.
The null space of A is a subspace of \mathbf{R}^{n} containing the set of all solutions of the homogeneous equation $A x=0$:

$$
\operatorname{Nul} A=\left\{x \text { in } \mathbf{R}^{n} \mid A x=0\right\}
$$

Note: The column space is the range of the transformation $T(x)=A x$.

Basis Nul A

The vectors in the parametric vector form of the general solution to $A x=0$ always form a basis for $\mathrm{Nul} A$.

Basis Col A
The pivot columns of A always form a basis for $\operatorname{Col} A$.

Column Space and Null Space

Example

Let $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 1 \\ 1 & 1\end{array}\right)$.
Let's compute the column space:

$$
\operatorname{Col} A=\operatorname{Span}\left\{\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right\}=\operatorname{Span}\left\{\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right\}
$$

This is a line in R^{3}.
Let's compute the null space:

$$
A\binom{x}{y}=\left(\begin{array}{l}
x+y \\
x+y \\
x+y
\end{array}\right)
$$

This zero if and only if $x=-y$. So

$$
\operatorname{Nul} A=\left\{\binom{x}{y} \text { in } \mathbf{R}^{2} \mid y=-x\right\} .
$$

This defines a line in \mathbf{R}^{2} :

Section 2.9

Dimension and Rank

The Rank Theorem

Definition

The rank of a matrix A, written rank A, is the dimension of the range of $T(x)=A x($ dimension of $\operatorname{Col} A)$.

Observe:

$$
\begin{aligned}
\operatorname{rank} A=\operatorname{dim} \operatorname{Col} A & =\text { the number of columns with pivots } \\
\operatorname{dim} \operatorname{Nul} A & =\text { the number of free variables } \\
& =\text { the number of columns without pivots. }
\end{aligned}
$$

Rank Theorem

If A is an $m \times n$ matrix, then
$\operatorname{rank} A+\operatorname{dim} \operatorname{Nul} A=n=$ the number of columns of A.

Basis Theorem
Let V be a subspace of dimension m. Then:

- Any m linearly independent vectors in V form a basis for V.
- Any m vectors that span V form a basis for V.

The Rank Theorem

Example

$$
A=(\underbrace{\left.\begin{array}{r}
1 \\
-2 \\
2
\end{array} \begin{array}{rrr}
2 \\
-3 \\
4 & 0 & -1 \\
4 & 5 \\
0 & -2
\end{array}\right) \underset{\text { free variables }}{\text { mum }}\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array} \begin{array}{r}
-8 \\
4 \\
0 \\
0
\end{array}\right)}_{\text {basis of } \operatorname{Col} A}
$$

A basis for $\operatorname{Col} A$ is

$$
\left\{\left(\begin{array}{r}
1 \\
-2 \\
2
\end{array}\right),\left(\begin{array}{r}
2 \\
-3 \\
4
\end{array}\right)\right\}
$$

so $\operatorname{rank} A=\operatorname{dim} \operatorname{Col} A=2$.
Since there are two free variables x_{3}, x_{4}, the parametric vector form for the solutions to $A x=0$ is

$$
x=x_{3}\left(\begin{array}{r}
8 \\
-4 \\
1 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{r}
7 \\
-3 \\
0 \\
1
\end{array}\right) \underset{\underset{\text { minnumin }}{\text { basis }} \operatorname{Nul} A}{\text { bunn }}\left\{\left(\begin{array}{r}
8 \\
-4 \\
1 \\
0
\end{array}\right),\left(\begin{array}{r}
7 \\
-3 \\
0 \\
1
\end{array}\right)\right\} .
$$

Thus $\operatorname{dim} \operatorname{Nul} A=2$.
The Rank Theorem says $2+2=4$.

Bases as Coordinate Systems

If $\mathcal{B}=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ is a basis for a subspace V and x is in V, then

$$
[x]_{\mathcal{B}}=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{m}
\end{array}\right) \quad \text { means } \quad x=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{m} v_{m}
$$

Finding the \mathcal{B}-coordinates for x means solving the vector equation

$$
x=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{m} v_{m}
$$

in the unknowns $c_{1}, c_{2}, \ldots, c_{m}$. This (usually) means row reducing the augmented matrix

$$
\left(\begin{array}{cccc|c}
\mid & \mid & & \mid & \mid \\
v_{1} & v_{2} & \cdots & v_{m} & x \\
\mid & \mid & & \mid & \mid
\end{array}\right)
$$

Question: What happens if you try to find the \mathcal{B}-coordinates of \times not in V ? You end up with an inconsistent system: $x=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{m} v_{m}$ has no solution.

Bases as Coordinate Systems

Picture

Let

$$
v_{1}=\left(\begin{array}{r}
2 \\
-1 \\
0 \\
1
\end{array}\right) \quad v_{2}=\left(\begin{array}{r}
1 \\
0 \\
0 \\
-1
\end{array}\right)
$$

These form a basis \mathcal{B} for the plane

$$
V=\operatorname{Span}\left\{v_{1}, v_{2}\right\} \text { in } \mathbf{R}^{4}
$$

Question: Estimate the \mathcal{B}-coordinates of these vectors:

$$
\left[u_{1}\right]_{\mathcal{B}}=\binom{1}{1} \quad\left[u_{2}\right]_{\mathcal{B}}=\binom{-1}{\frac{1}{2}} \quad\left[u_{3}\right]_{\mathcal{B}}=\binom{\frac{3}{2}}{-\frac{1}{2}} \quad\left[u_{4}\right]_{\mathcal{B}}=\binom{0}{\frac{3}{2}}
$$

Remark
Make sense of V as two-dim: Choose a basis \mathcal{B} and use \mathcal{B}-coordinates. Careful: The coordinates give only the coefficients of a linear combination using such basis vectors.

Bases as Coordinate Systems

Example

Let $v_{1}=\left(\begin{array}{l}2 \\ 3 \\ 2\end{array}\right), v_{2}=\left(\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right), v_{3}=\left(\begin{array}{l}2 \\ 8 \\ 6\end{array}\right), \quad V=\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}\right\}$.
Question: Find a basis for V.
V is the column span of the matrix

$$
A=\left(\begin{array}{rrr}
2 & -1 & 2 \\
3 & 1 & 8 \\
2 & 1 & 6
\end{array}\right) \underset{\sim}{\text { row reduce }}\left(\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right)
$$

A basis for the column span is formed by the pivot columns: $\mathcal{B}=\left\{v_{1}, v_{2}\right\}$.
Question: Find the \mathcal{B}-coordinates of $x=\left(\begin{array}{c}4 \\ 11 \\ 8\end{array}\right)$.
We have to solve $x=c_{1} v_{1}+c_{2} v_{2}$.

$$
\left(\begin{array}{rr|r}
2 & -1 & 4 \\
3 & 1 & 11 \\
2 & 1 & 8
\end{array}\right) \underset{\text { row reduce }}{\text { romm }}\left(\begin{array}{ll|l}
1 & 0 & 3 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right)
$$

So $x=3 v_{1}+2 v_{2}$ and $[x]_{\mathcal{B}}=\binom{3}{2}$.

The Invertible Matrix Theorem

Addenda

Using the Rank Theorem and the Basis Theorem, we have new interpretations of the meaning of invertibility.

The Invertible Matrix Theorem
Let A be an $n \times n$ matrix, and let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be the linear transformation $T(x)=A x$. The following statements are equivalent.

1. A is invertible.
2. T is invertible.
3. A is row equivalent to I_{n}.
4. A has n pivots.
5. $A x=0$ has only the trivial solution.
6. The columns of A are linearly independent.
7. T is one-to-one.
8. $A x=b$ is consistent for all b in \mathbf{R}^{n}.
9. The columns of A span \mathbf{R}^{n}.
10. T is onto.
11. A has a left inverse (there exists B such that $B A=I_{n}$).
12. A has a right inverse (there exists B such that $A B=I_{n}$).
13. A^{T} is invertible.
14. The columns of A form a basis for \mathbf{R}^{n}.
15. $\operatorname{Col} A=\mathbf{R}^{n}$.
16. $\operatorname{dim} \operatorname{Col} A=n$.
17. $\operatorname{rank} A=n$.
18. $\operatorname{Nul} A=\{0\}$.
19. $\operatorname{dim} \operatorname{Nul} A=0$.

Extra: Why coefficients are unique

Lemma like a theorem, but less important

If $\mathcal{B}=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ is a basis for a subspace V, then any vector x in V can be written as a linear combination

$$
x=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{m} v_{m}
$$

for unique coefficients $c_{1}, c_{2}, \ldots, c_{m}$.
Proof. We know x is a linear combination of the v_{i} (they span V). Suppose that we can write x as a linear combination with different lists of coefficients:

$$
\begin{aligned}
& x=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{m} v_{m} \\
& x=c_{1}^{\prime} v_{1}+c_{2}^{\prime} v_{2}+\cdots+c_{m}^{\prime} v_{m}
\end{aligned}
$$

Subtracting:

$$
0=x-x=\left(c_{1}-c_{1}^{\prime}\right) v_{1}+\left(c_{2}-c_{2}^{\prime}\right) v_{2}+\cdots+\left(c_{m}-c_{m}^{\prime}\right) v_{m}
$$

Since $v_{1}, v_{2}, \ldots, v_{m}$ are linearly independent, they only have the trivial linear dependence relation. That means each $c_{i}-c_{i}^{\prime}=0$, or $c_{i}=c_{i}^{\prime}$.

Extra: Subspaces

How do you check if a subset is a subspace?

- Is it a span?
- Is it all of \mathbf{R}^{n} or the zero subspace $\{0\}$?

Can it be written as

- a span?
- the column space of a matrix?
- the null space of a matrix?
- a type of subspace that we'll learn about later (eigenspaces, ...)?

If so, then it's automatically a subspace.
If all else fails:

- Can you verify directly that it satisfies the three defining properties?

