Abstract vector spaces

Why do we care about abstract definitions?

Example

The set of polynomials of degree at most 2 is:

- $V=\left\{a x^{2}+b x+c: a, b, c \in \mathbf{R}\right\}$
- V is a vector space of dimension 3
- A basis for V is $\mathcal{B}=\left\{v_{1}, v_{2}, v_{3}\right\}$, with $v_{1}=x^{2}, v_{2}=x, v_{3}=1$

Recall: elements in a vector space do not multiply each other.

Define $T: V \rightarrow V$ by $T\left(a x^{2}+b x+c\right)=2 a x+b$.

- This is the differential operator and it is linear!
- Onto? No. There is no polynomial in V with derivative x^{2}.
- One-to-one? No. Both $a x^{2}+b x$ and $a x^{2}+b x+1$ have same derivative.

Section 5.1

Eigenvectors and Eigenvalues

Motivation: Dynamical systems

FIGURE 1 Iterates of a point \mathbf{x}_{0} under the action of a matrix with a complex eigenvalue.

$$
A=\left(\begin{array}{cc}
.5 & -.6 \\
.75 & 1.1
\end{array}\right)
$$

Recall: Rotations correspond to $\left(\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right)$

Background: Change of basis

\mathcal{B}-matrix for T
When $V=W=\mathbf{R}^{n}$ and $\mathcal{B}=\mathcal{C}$ (vectors in the same order), then the matrix M is called the \mathcal{B}-matrix for T denoted by $[T]_{\mathcal{B}}$.

Background: A matrix for a given basis

Let $V=\left\{a x^{2}+b x+c: a, b, c \in \mathbf{R}\right\}$ and $T\left(a x^{2}+b x+c\right)=2 a x+b$.

- A basis of V is $\mathcal{B}=\left\{x^{2}, x, 1\right\}$.

Let $M=\left(\begin{array}{lll}0 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$, if $v=a x^{2}+b x+c$ then

- $[v]_{\mathcal{B}}=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$
- $[T(v)]_{\mathcal{B}}=\left(\begin{array}{c}0 \\ 2 a \\ b\end{array}\right)=M\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$
M is called the \mathcal{B}-matrix for T and denoted by $[T]_{\mathcal{B}}$.

Background: Change of basis

If $\mathcal{B}=\left\{b_{1}, \ldots, b_{n}\right\}$ then

$$
M=\left(\left[T\left(b_{1}\right)\right]_{\mathcal{C}}\left[T\left(b_{2}\right)\right]_{\mathcal{C}} \ldots\left[T\left(b_{n}\right)\right]_{\mathcal{c}}\right)
$$

Compare: Use this formula for the case $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ and $\mathcal{B}=\mathcal{C}=\left\{e_{1}, \ldots, e_{n}\right\}$.

Change of basis

Suppose $A=P D P^{-1}$. If \mathcal{B} is the basis for \mathbf{R}^{n} formed from the columns of P, then D is the \mathcal{B}-matrix for the transformation $T(x)=A x$.

Motivation 2: Difference equations

A Biology Question

How to predict a population of rabbits with given dynamics:

1. half of the newborn rabbits survive their first year;
2. of those, half survive their second year;
3. their maximum life span is three years;
4. Each rabbit gets $0,6,8$ baby rabbits in their three years, respectively.

Approach: Each year, count the population by age:

$$
v_{n}=\left(\begin{array}{l}
f_{n} \\
s_{n} \\
t_{n}
\end{array}\right) \text { where } \begin{cases}f_{n} & =\text { first-year rabbits in year } n \\
s_{n} & =\text { second-year rabbits in year } n \\
t_{n} & =\text { third-year rabbits in year } n\end{cases}
$$

The dynamics say:

$$
\overbrace{\left(\begin{array}{c}
f_{n+1} \\
s_{n+1} \\
t_{n+1}
\end{array}\right)}^{v_{n+1}}=\left(\begin{array}{c}
6 s_{n}+8 t_{n} \\
f_{n} / 2 \\
s_{n} / 2
\end{array}\right)=\overbrace{\left(\begin{array}{ccc}
0 & 6 & 8 \\
\frac{1}{2} & 0 & 0 \\
0 & \frac{1}{2} & 0
\end{array}\right)\left(\begin{array}{c}
f_{n} \\
s_{n} \\
t_{n}
\end{array}\right)}^{A v_{n}}
$$

Motivation: Difference equations

Continued

This is a difference equation: $A v_{n}=v_{n+1}$
If you know initial population v_{0}, what happens in 10 years v_{10} ?
Plug in a computer:

v_{0}	v_{10}	v_{11}
$\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$	$\left(\begin{array}{l}9459 \\ 2434 \\ 577\end{array}\right)$	$\left(\begin{array}{c}19222 \\ 4729 \\ 1217\end{array}\right)$
$\left(\begin{array}{l}3 \\ 7 \\ 9\end{array}\right)$	$\left(\begin{array}{c}30189 \\ 7761 \\ 1844\end{array}\right)$	$\left(\begin{array}{c}61316 \\ 15095 \\ 3881\end{array}\right)$
$\left(\begin{array}{c}16 \\ 4 \\ 1\end{array}\right)$	$\left(\begin{array}{c}16384 \\ 4096 \\ 1024\end{array}\right)$	$\left(\begin{array}{c}32768 \\ 8192 \\ 2048\end{array}\right)$

Notice any patterns?

1. Each segment of the population essentially doubles every year: $A v_{11} \approx 2 v_{10}$.
2. The ratios get close to (16:4:1):

$$
v_{11} \approx(\operatorname{big} \#) \cdot\left(\begin{array}{c}
16 \\
4 \\
1
\end{array}\right)
$$

New terms coming: eigenvalue, and eigenvector

Motivation: Difference equations

Continued (2)

If v_{0} satisfies $A_{v_{0}}=\lambda v_{0}$ then

$$
v_{n}=A^{n-1}\left(A v_{0}\right)=\lambda A^{n-1} v_{0}=\lambda^{2} A^{n-2} v_{0} \quad \ldots=\lambda^{n} v_{0}
$$

It is much easier to compute $v_{n}=\lambda^{10} v_{0}$.

Example

$$
A=\left(\begin{array}{ccc}
0 & 6 & 8 \\
\frac{1}{2} & 0 & 0 \\
0 & \frac{1}{2} & 0
\end{array}\right) \quad v_{0}=\left(\begin{array}{c}
16 \\
4 \\
1
\end{array}\right) \quad A v_{0}=2 v_{0}
$$

Starting with 16 baby rabbits, 4 first-year rabbits, and 1 second-year rabbit:

- The population will exactly double every year,
- In 10 years, you will have $2^{10} \cdot 16$ baby rabbits, $2^{10} \cdot 4$ first-year rabbits, and 2^{10} second-year rabbits.

Geometrically

Eigenvectors
An eigenvector of a matrix A is a nonzero vector v such that:

- $A v$ is a multiple of v, which means
- Av is on the same line as v.

v is an eigenvector
w is not an eigenvector

Poll

Poll
Which of the vectors
A. $\binom{1}{1}$
B. $\binom{1}{-1}$
C. $\binom{-1}{1}$
D. $\binom{2}{1}$
E. $\binom{0}{0}$
are eigenvectors of the matrix $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$?

$$
\begin{aligned}
\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\binom{1}{1} & =2\binom{1}{1} \\
\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\binom{1}{-1} & =0\binom{1}{-1} \\
\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\binom{-1}{1} & =0\binom{-1}{1} \\
\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\binom{2}{1} & =\binom{3}{3} \\
\binom{0}{0} &
\end{aligned}
$$

eigenvector with eigenvalue 2
eigenvector with eigenvalue 0
eigenvector with eigenvalue 0

not an eigenvector

is never an eigenvector

Eigenvectors and Eigenvalues

```
Definitions
If v}\mathrm{ is not zero and }Av=\lambdav\mathrm{ then
v}\mathrm{ is an eigenvector and }\lambda\mathrm{ is its eigenvalue.
```

- Eigenvalues and eigenvectors are only for square matrices.
- Eigenvectors are by definition nonzero. Eigenvalues may be equal to zero.

Example

$$
A=\left(\begin{array}{cc}
2 & 2 \\
-4 & 8
\end{array}\right) \quad v=\binom{1}{1}
$$

Multiply:

$$
A v=\left(\begin{array}{cc}
2 & 2 \\
-4 & 8
\end{array}\right)\binom{1}{1}=\binom{4}{4}=4 v
$$

Hence v is an eigenvector of A, with eigenvalue $\lambda=4$.

Verifying Eigenvalues

Question: Is $\lambda=3$ an eigenvalue of $A=\left(\begin{array}{cc}2 & -4 \\ -1 & -1\end{array}\right)$?
In other words, does

$$
\left.\begin{array}{l}
A v=3 v \\
A v-3 v=0 \\
(A-3 I) v=0
\end{array}\right\} \text { have a nontrivial solution? }
$$

We know how to answer that: Row reduction!

$$
A-3 I=\left(\begin{array}{cc}
2 & -4 \\
-1 & -1
\end{array}\right)-3\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
-1 & -4 \\
-1 & -4
\end{array}\right) \leadsto m \rightarrow\left(\begin{array}{ll}
1 & 4 \\
0 & 0
\end{array}\right)
$$

Parametric vector form: $\binom{v_{1}}{v_{2}}=v_{2}\binom{-4}{1}$.
Bottom-line: Any nonzero multiple of $\binom{-4}{1}$ is an eigenvector with eigenvalue $\lambda=3$ Check one of them.

Eigenspaces

The λ-eigenspace is a subspace of \mathbf{R}^{n} containing all eigenvectors of A with eigenvalue λ, plus the zero vector:

$$
\lambda \text {-eigenspace }=\operatorname{Nul}(A-\lambda I) .
$$

Find a basis for the 2-eigenspace of

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
4 & -1 & 6 \\
2 & 1 & 6 \\
2 & -1 & 8
\end{array}\right) . \\
& A-2 I=\left(\begin{array}{lll}
2 & -1 & 6 \\
2 & -1 & 6 \\
2 & -1 & 6
\end{array}\right) \text { mow reduce } \quad\left(\begin{array}{ccc}
1 & -\frac{1}{2} & 3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& \underset{\substack{\text { parametric vector } \\
\text { form } \\
\text { mannum }}}{\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)}=v_{2}\left(\begin{array}{c}
\frac{1}{2} \\
1 \\
0
\end{array}\right)+v_{3}\left(\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right) \\
& \underset{\text { masis }}{\text { basis }}\left\{\left(\begin{array}{l}
\frac{1}{2} \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right)\right\}
\end{aligned}
$$

Eigenspaces

This is how eigenvalues and eigenvectors make matrices easier to understand.

What does this 2-eigenspace look like? A basis is $\left\{\left(\begin{array}{c}\frac{1}{2} \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}-3 \\ 0 \\ 1\end{array}\right)\right\}$.

For any v in the 2-eigenspace, $A v=2 v$ by definition.
This means, on its 2-eigenspace, A acts by scaling by 2 .

Summary

Let A be an $n \times n$ matrix and let λ be a number.

1. λ is an eigenvalue of A
if and only if $(A-\lambda I) x=0$ has a nontrivial solution.
2. Finding a basis for the λ-eigenspace of A means finding a basis for $\operatorname{Nul}(A-\lambda I)$,
3. The eigenvectors with eigenvalue λ are the nonzero elements of $\operatorname{Nul}(A-\lambda I)$

- If we know λ is eigenvalue: easy to find eigenvectors (row reduction).
- And to find all eigenvalues? Will need to compute a determinant. Finding λ that has a non-trivial solution to $(A-\lambda I) v=0$ boils down to finding λ that makes $\operatorname{det}(A-\lambda I)=0$.

Some facts you can work out yourself

Fact 1

A is invertible if and only if 0 is not an eigenvalue of A.

Fact 2
If $v_{1}, v_{2}, \ldots, v_{k}$ are eigenvectors of A with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$, then $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is linearly independent.

Consequence of Fact 2
An $n \times n$ matrix has at most n distinct eigenvalues.

Fact 3
The eigenvalues of a triangular matrix are the diagonal entries.

Extra: Some proofs

Why Fact 1 ?

0 is an eigenvalue of $A \Longleftrightarrow A x=0$ has a nontrivial solution $\Longleftrightarrow A$ is not invertible.

Why Fact 2 (for two vectors)?

If v_{2} is a multiple of v_{1}, then v_{2} is contained in the λ_{1}-eigenspace. This is not true as v_{2} does not have the same eigenvalue as v_{1}.

Example

Find all eigenvalues of $A=\left(\begin{array}{ccc}3 & 4 & 1 \\ 0 & -1 & -2 \\ 0 & 0 & 3\end{array}\right)$.

$$
A-\lambda I=\left(\begin{array}{ccc}
3 & 4 & 1 \\
0 & -1 & -2 \\
0 & 0 & 3
\end{array}\right)-\lambda I_{3}=\left(\begin{array}{ccc}
3-\lambda & 4 & 1 \\
0 & -1-\lambda & -2 \\
0 & 0 & 3-\lambda
\end{array}\right)
$$

Since $\operatorname{det}(A-\lambda /)=(3-\lambda)^{2}(-1-\lambda)$, eigenvalues are $\lambda=3$ and -1 .

