Sections 5.2-5.3

Characteristic Equation and Diagonalization

Powers of Diagonal Matrices

- Taking powers of diagonal matrices is easy!
- Working with *diagonalizable matrices* is also easy.

If D is diagonal

Then D^n is also diagonal, the diagonal entries of D^n are the *nth powers of the diagonal* entries of D

Example

$$D = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \qquad \qquad M = \begin{pmatrix} -1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3} \end{pmatrix},$$
$$D^{2} = \begin{pmatrix} 4 & 0 \\ 0 & 9 \end{pmatrix} \qquad \qquad M^{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & \frac{1}{9} \end{pmatrix},$$
$$\vdots \qquad \qquad \vdots \qquad \qquad D^{n} = \begin{pmatrix} 2^{n} & 0 \\ 0 & 3^{n} \end{pmatrix} \qquad \qquad M^{n} = \begin{pmatrix} (-1)^{n} & 0 & 0 \\ 0 & \frac{1}{2^{n}} & 0 \\ 0 & 0 & \frac{1}{3^{n}} \end{pmatrix}.$$

Definition

An $n \times n$ matrix A is **diagonalizable** if it is similar to a diagonal matrix:

 $A = PDP^{-1}$ for *D* diagonal.

So diagonalizable matrices are easy to raise to any power.

The Diagonalization Theorem

An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.

In this case, $A = PDP^{-1}$ for

$$P = \begin{pmatrix} | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \\ | & | & | \end{pmatrix} \qquad D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix},$$

where v_1, v_2, \ldots, v_n are linearly independent eigenvectors, and $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the *corresponding eigenvalues* (in the same order).

The Characteristic Polynomial

Last section we learn that for a square matrix A:

$$\lambda$$
 is an eigenvalue of $A \iff \det(A - \lambda I) = 0$.

Compute Eigenvalues

The *eigenvalues* of A are **the roots** of det $(A - \lambda I)$, which is the characteristic polynomial of A.

Definition

Let A be a square matrix. The characteristic polynomial of A is

$$f(\lambda) = \det(A - \lambda I).$$

The characteristic equation of A is the equation

$$f(\lambda) = \det(A - \lambda I) = 0.$$

The Characteristic Polynomial Example

Question: What are the eigenvalues of the rabbit population matrix

$$A=egin{pmatrix} 0 & 6 & 8 \ rac{1}{2} & 0 & 0 \ 0 & rac{1}{2} & 0 \end{pmatrix}$$
?

Answer: First we find the characteristic polynomial:

$$f(\lambda) = \det(A - \lambda I) = \det\begin{pmatrix} -\lambda & 6 & 8\\ \frac{1}{2} & -\lambda & 0\\ 0 & \frac{1}{2} & -\lambda \end{pmatrix}$$
$$= 8\left(\frac{1}{4} - 0 \cdot -\lambda\right) - \lambda\left(\lambda^2 - 6 \cdot \frac{1}{2}\right)$$
$$= -\lambda^3 + 3\lambda + 2.$$

Already know one eigenvalue is $\lambda = 2$, check : f(2) = -8 + 6 + 2 = 0.

Doing polynomial long division, we get:

$$\frac{-\lambda^3+3\lambda+2}{\lambda-2}=-\lambda^2-2\lambda-1=-(\lambda+1)^2.$$

Hence $f(\lambda) = -(\lambda + 1)^2(\lambda - 2)$ and so $\lambda = -1$ *is also* an eigenvalue.

Definition

The **algebraic multiplicity** of an eigenvalue λ is its *multiplicity as a root* of the characteristic polynomial.

Example

In the rabbit population matrix, $f(\lambda) = -(\lambda - 2)(\lambda + 1)^2$. The algebraic multiplicities are

$$\lambda = egin{cases} 2 & \mbox{multiplicity 1}, \ -1 & \mbox{multiplicity 2} \end{cases}$$

Definition

Let λ be an eigenvalue of a square matrix A. The geometric multiplicity of λ is the *dimension of the* λ *-eigenspace*.

 $1 \leq$ (the geometric multiplicity of λ)

 \leq (the algebraic multiplicity of λ).

Problem: Show that
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 is not diagonalizable.

The characteristic polynomial is

$$f(\lambda) = \det(A - \lambda I) = (\lambda - 1)^2.$$

Let's compute the 1-eigenspace:

$$(A-I)x = 0 \iff \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} x = 0.$$

A basis for the 1-eigenspace is $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$; solution has only one free variable!

Conclusion:

- All eigenvectors of A are multiples of $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$.
- ► So A has only one linearly independent eigenvector
- If A was diagonalizable, there would be two linearly independent eigenvectors!

Poll Which of the following matrices *are diagonalizable*, and why? A. $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ B. $\begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$ C. $\begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$ D. $\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$

Matrix D is already diagonal!

Matrix B is *diagonalizable* because it has two distinct eigenvalues.

Matrices A and C are *not diagonalizable*: Same argument as previous slide:

All eigenvectors are multiples of $\begin{pmatrix} 1\\ 0 \end{pmatrix}$.

Example

The matrix $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ has characteristic polynomial $f(\lambda) = (\lambda - 1)^2$.

We showed before that the 1-eigenspace has dimension 1 and A was **not** diagonalizable. The geometric multiplicity is smaller than the algebraic.

Eigenvalue	Geometric	Algebraic
$\lambda = 1$	1	2

The Diagonalization Theorem (Alternate Form)

Let A be an $n \times n$ matrix. The following are equivalent:

- 1. A is diagonalizable.
- 2. The sum of the geometric multiplicities of the eigenvalues of A equals n.
- 3. The sum of all algebraic multiplicities is *n*. And for each eigenvalue, the *geometric and algebraic* multiplicity are equal.

How to **diagonalize a matrix** A:

- 1. *Find the eigenvalues* of A using the characteristic polynomial.
- 2. Compute a basis \mathcal{B}_{λ} for each λ -eigenspace of A.
- 3. If there are fewer than *n* total vectors in the union of all of the eigenspace bases \mathcal{B}_{λ} , then the matrix is not diagonalizable.
- 4. Otherwise, the *n* vectors $v_1, v_2, ..., v_n$ in your eigenspace bases are linearly independent, and $A = PDP^{-1}$ for

$$P = \begin{pmatrix} | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \\ | & | & | \end{pmatrix} \text{ and } D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix},$$

where λ_i is the eigenvalue for v_i .

Diagonalization Example

Problem: Diagonalize
$$A = \begin{pmatrix} 4 & -3 & 0 \\ 2 & -1 & 0 \\ 1 & -1 & 1 \end{pmatrix}$$
.

The characteristic polynomial is

$$f(\lambda) = \det(A - \lambda I) = -\lambda^3 + 4\lambda^2 - 5\lambda + 2 = -(\lambda - 1)^2(\lambda - 2).$$

Therefore the *eigenvalues are* 1 and 2, with respective multiplicities 2 and 1.

First compute the 1-eigenspace:

$$(A - I)x = 0 \iff \begin{pmatrix} 3 & -3 & 0 \\ 2 & -2 & 0 \\ 1 & -1 & 0 \end{pmatrix} x = 0 \xrightarrow{\text{rref}} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} x = 0$$

The parametric vector form is $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = y \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$

Hence a basis for the 1-eigenspace is

$$\mathcal{B}_1 = \{ \mathbf{v}_1, \mathbf{v}_2 \}$$
 where $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$

Now let's compute the 2-eigenspace:

$$(A-2I)x = 0 \iff \begin{pmatrix} 2 & -3 & 0 \\ 2 & -3 & 0 \\ 1 & -1 & -1 \end{pmatrix} x = 0 \xrightarrow{\text{rref}} \begin{pmatrix} 1 & 0 & -3 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix} x = 0$$

The parametric form is x = 3z, y = 2z, so an eigenvector with eigenvalue 2 is

$$v_3 = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$

Note that v_1 , v_2 form a basis for the 1-eigenspace, and v_3 has a distinct eigenvalue. Thus, the eigenvectors v_1 , v_2 , v_3 are linearly independent and the Diagonalization Theorem says

$$A = PDP^{-1} \quad \text{for} \quad P = \begin{pmatrix} 1 & 0 & 3 \\ 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix} \qquad D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

In this case: there are 3 linearly independent eigenvectors and only 2 distinct eigenvalues.

Similarity

Two $n \times n$ matrices A and B are similar if there is an $n \times n$ matrix C such that $A = CBC^{-1}.$

The intuition

C keeps record of a basis $C = \{v_1, \ldots, v_n\}$ of \mathbf{R}^n .

B transforms the *C*-coordinates of *x*: $B[x]_{C} = [Ax]_{C}$ in *the same way that A* transforms the standard coordinates of *x*

Fact If A and B are similar, then they have the same characteristic polynomial. Consequence: similar matrices have the same eigenvalues! Though different eigenvectors in general.

Why? Suppose $A = CBC^{-1}$. We can show that $det(A - \lambda I) = det(B - \lambda I)$.

Let
$$D = \begin{pmatrix} 1 & 0 \\ 0 & 1/2 \end{pmatrix}$$
.

Start with a vector v_0 , and let $v_1 = Dv_0$, $v_2 = Dv_1$, ..., $v_n = D^n v_0$.

Question: What happens to the v_i 's for different starting vectors v_0 ?

Answer: Note that D is diagonal, so

$$D^n \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1^n & 0 \\ 0 & 1/2^n \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a \\ b/2^n \end{pmatrix}.$$

If we start with $v_0 = \begin{pmatrix} a \\ b \end{pmatrix}$, then

- the x-coordinate equals the initial coordinate,
- the y-coordinate gets halved every time.

Picture

So all vectors get "collapsed into the x-axis", which is the 1-eigenspace.

More complicated example

Let
$$A = \begin{pmatrix} 3/4 & 1/4 \\ 1/4 & 3/4 \end{pmatrix}$$
.

Start with a vector v_0 , and let $v_1 = Av_0$, $v_2 = Av_1$, ..., $v_n = A^n v_0$.

Question: What happens to the v_i 's for different starting vectors v_0 ?

Matrix Powers: This is a diagonalization question. Bottom line: $A = PDP^{-1}$ for

$$P = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad D = \begin{pmatrix} 1 & 0 \\ 0 & 1/2 \end{pmatrix}.$$

Hence $v_n = PD^n P^{-1}v_0$. Details: The characteristic polynomial is

$$f(\lambda) = \lambda^2 - \operatorname{Tr}(A)\lambda + \det(A) = \lambda^2 - \frac{3}{2}\lambda + \frac{1}{2} = (\lambda - 1)(\lambda - \frac{1}{2}).$$

We compute eigenvectors with eigenvalues 1 and 1/2 to be, respectively,

$$w_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 $w_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

Picture of the more complicated example

 $A^n = PD^nP^{-1}$ acts on the usual coordinates of v_0 in the same way that D^n acts on the *B*-coordinates, where $\mathcal{B} = \{w_1, w_2\}$.

So all vectors get "collapsed into the 1-eigenspace".