
Sections 5.2-5.3

Characteristic Equation and Diagonalization



Powers of Diagonal Matrices

I Taking powers of diagonal matrices is easy!
I Working with diagonalizable matrices is also easy.

Then Dn is also diagonal, the diagonal entries of Dn

are the nth powers of the diagonal entries of D

If D is diagonal

Example

D =

(
2 0
0 3

)
M =

−1 0 0
0 1

2
0

0 0 1
3

 ,

D2 =

(
4 0
0 9

)
M2 =

 1 0 0
0 1

4
0

0 0 1
9

 ,

...
...

Dn =

(
2n 0
0 3n

)
Mn =

 (−1)n 0 0
0 1

2n
0

0 0 1
3n

 .



Diagonalizable Matrices

Definition
An n × n matrix A is diagonalizable if it is similar to a diagonal matrix:

A = PDP−1 for D diagonal.

If A = PDP−1 for D =


d11 0 · · · 0
0 d22 · · · 0
...

...
. . .

...
0 0 · · · dnn

 then

Ak = PDKP−1 = P


dk
11 0 · · · 0
0 dk

22 · · · 0
...

...
. . .

...
0 0 · · · dk

nn

P−1.

Important

So diagonalizable matrices are easy to raise to any power.



Diagonalization

The Diagonalization Theorem

An n × n matrix A is diagonalizable if and only if A has n linearly independent
eigenvectors.

In this case, A = PDP−1 for

P =

 | | |
v1 v2 · · · vn
| | |

 D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

,
where v1, v2, . . . , vn are linearly independent eigenvectors, and λ1, λ2, . . . , λn are
the corresponding eigenvalues (in the same order).



The Characteristic Polynomial

Last section we learn that for a square matrix A:

λ is an eigenvalue of A ⇐⇒ det(A− λI ) = 0.

The eigenvalues of A are the roots of det(A − λI ) ,
which is the characteristic polynomial of A.

Compute Eigenvalues

Definition
Let A be a square matrix. The characteristic polynomial of A is

f (λ) = det(A− λI ).

The characteristic equation of A is the equation

f (λ) = det(A− λI ) = 0.



The Characteristic Polynomial
Example

Question: What are the eigenvalues of the rabbit population matrix

A =

 0 6 8
1
2

0 0
0 1

2
0

?

Answer: First we find the characteristic polynomial:

f (λ) = det(A− λI ) = det

−λ 6 8
1
2
−λ 0

0 1
2
−λ


= 8

(
1

4
− 0 · −λ

)
− λ

(
λ2 − 6 · 1

2

)
= −λ3 + 3λ+ 2.

Already know one eigenvalue is λ = 2, check : f (2) = −8 + 6 + 2 = 0.

Doing polynomial long division, we get:

−λ3 + 3λ+ 2

λ− 2
= −λ2 − 2λ− 1 = −(λ+ 1)2.

Hence f (λ) = −(λ+ 1)2(λ− 2) and so λ = −1 is also an eigenvalue.



Algebraic Multiplicity

Definition
The algebraic multiplicity of an eigenvalue λ is its multiplicity as a root of the
characteristic polynomial.

Example

In the rabbit population matrix, f (λ) = −(λ− 2)(λ+ 1)2. The algebraic
multiplicities are

λ =

{
2 multiplicity 1,

−1 multiplicity 2

Definition
Let λ be an eigenvalue of a square matrix A. The geometric multiplicity of λ
is the dimension of the λ-eigenspace.

1 ≤ (the geometric multiplicity of λ)

≤ (the algebraic multiplicity of λ).



Diagonalization
A non-diagonalizable matrix

Problem: Show that A =

(
1 1
0 1

)
is not diagonalizable.

The characteristic polynomial is

f (λ) = det(A− λI ) = (λ− 1)2.

Let’s compute the 1-eigenspace:

(A− I )x = 0 ⇐⇒
(

0 1
0 0

)
x = 0.

A basis for the 1-eigenspace is

(
1
0

)
; solution has only one free variable!

Conclusion:

I All eigenvectors of A are multiples of

(
1
0

)
.

I So A has only one linearly independent eigenvector

I If A was diagonalizable, there would be two linearly independent
eigenvectors!



Poll

Which of the following matrices are diagonalizable, and why?

A.

(
1 2
0 1

)
B.

(
1 2
0 2

)
C.

(
2 1
0 2

)
D.

(
2 0
0 2

)
Poll

Matrix D is already diagonal!

Matrix B is diagonalizable because it has two distinct eigenvalues.

Matrices A and C are not diagonalizable: Same argument as previous slide:

All eigenvectors are multiples of

(
1
0

)
.



Non-Distinct Eigenvalues

Example

The matrix A =

(
1 1
0 1

)
has characteristic polynomial f (λ) = (λ− 1)2.

We showed before that the 1-eigenspace has dimension 1 and A was not
diagonalizable. The geometric multiplicity is smaller than the algebraic.

Eigenvalue Geometric Algebraic
λ = 1 1 2

The Diagonalization Theorem (Alternate Form)

Let A be an n × n matrix. The following are equivalent:

1. A is diagonalizable.

2. The sum of the geometric multiplicities of the eigenvalues of A equals n.

3. The sum of all algebraic multiplicities is n. And for each eigenvalue, the
geometric and algebraic multiplicity are equal.



Diagonalization
Procedure

How to diagonalize a matrix A:

1. Find the eigenvalues of A using the characteristic polynomial.

2. Compute a basis Bλ for each λ-eigenspace of A.

3. If there are fewer than n total vectors in the union of all of the eigenspace
bases Bλ, then the matrix is not diagonalizable.

4. Otherwise, the n vectors v1, v2, . . . , vn in your eigenspace bases are linearly
independent, and A = PDP−1 for

P =

 | | |
v1 v2 · · · vn
| | |

 and D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

,
where λi is the eigenvalue for vi .



Diagonalization
Example

Problem: Diagonalize A =

 4 −3 0
2 −1 0
1 −1 1

.

The characteristic polynomial is

f (λ) = det(A− λI ) = −λ3 + 4λ2 − 5λ+ 2 = −(λ− 1)2(λ− 2).

Therefore the eigenvalues are 1 and 2, with respective multiplicities 2 and 1.

First compute the 1-eigenspace:

(A− I )x = 0 ⇐⇒

 3 −3 0
2 −2 0
1 −1 0

 x = 0
rref

 1 −1 0
0 0 0
0 0 0

 x = 0

The parametric vector form is

x
y
z

 = y

1
1
0

+ z

0
0
1

.

Hence a basis for the 1-eigenspace is

B1 =
{
v1, v2

}
where v1 =

1
1
0

 , v2 =

0
0
1

 .



Diagonalization
Example, continued

Now let’s compute the 2-eigenspace:

(A− 2I )x = 0 ⇐⇒

 2 −3 0
2 −3 0
1 −1 −1

 x = 0
rref

 1 0 −3
0 1 −2
0 0 0

 x = 0

The parametric form is x = 3z , y = 2z , so an eigenvector with eigenvalue 2 is

v3 =

3
2
1

 .

Note that v1, v2 form a basis for the 1-eigenspace, and v3 has a distinct
eigenvalue. Thus, the eigenvectors v1, v2, v3 are linearly independent and the
Diagonalization Theorem says

A = PDP−1 for P =

 1 0 3
1 0 2
0 1 1

 D =

 1 0 0
0 1 0
0 0 2

.
In this case: there are 3 linearly independent eigenvectors and only 2 distinct
eigenvalues.



Similarity

Two n× n matrices A and B are similar if there is an n× n matrix C such that

A = CBC−1.

C keeps record of a basis C = {v1, . . . , vn} of Rn.

B transforms the C-coordinates of x : B[x ]C = [Ax ]C in
the same way that A transforms the standard coordinates of x

The intuition

If A and B are similar,
then they have the same characteristic polynomial.

Consequence:
similar matrices have the same eigenvalues! Though dif-

ferent eigenvectors in general.

Fact

Why? Suppose A = CBC−1. We can show that det(A− λI ) = det(B − λI ).



Applications to Difference Equations

Let D =

(
1 0
0 1/2

)
.

Start with a vector v0, and let v1 = Dv0, v2 = Dv1, . . . , vn = Dnv0.

Question: What happens to the vi ’s for different starting vectors v0?

Answer: Note that D is diagonal, so

Dn

(
a
b

)
=

(
1n 0
0 1/2n

)(
a
b

)
=

(
a

b/2n

)
.

If we start with v0 =

(
a
b

)
, then

I the x-coordinate equals the initial coordinate,

I the y -coordinate gets halved every time.



Applications to Difference Equations
Picture

D

(
a
b

)
=

(
1 0
0 1/2

)(
a
b

)
=

(
a

b/2

)

1-eigenspace

1/2-eigenspace

e1

e2
v0
v1
v2
v3
v4

So all vectors get “collapsed into the x-axis”, which is the 1-eigenspace.



Applications to Difference Equations
More complicated example

Let A =

(
3/4 1/4
1/4 3/4

)
.

Start with a vector v0, and let v1 = Av0, v2 = Av1, . . . , vn = Anv0.

Question: What happens to the vi ’s for different starting vectors v0?

Matrix Powers: This is a diagonalization question. Bottom line: A = PDP−1

for

P =

(
1 1
1 −1

)
D =

(
1 0
0 1/2

)
.

Hence vn = PDnP−1v0.
Details: The characteristic polynomial is

f (λ) = λ2 − Tr(A)λ+ det(A) = λ2 − 3

2
λ+

1

2
= (λ− 1)

(
λ− 1

2

)
.

We compute eigenvectors with eigenvalues 1 and 1/2 to be, respectively,

w1 =

(
1
1

)
w2 =

(
1
−1

)
.



Applications to Difference Equations
Picture of the more complicated example

An = PDnP−1 acts on the usual coordinates of v0 in the same way that Dn

acts on the B-coordinates, where B = {w1,w2}.

1-eigenspace1/2-eigenspace

w1

w2

v0
v1
v2
v3
v4

So all vectors get “collapsed into the 1-eigenspace”.


