Announcements

Tuesday, March 06

Midterm topics

- 2.6, 10.1,10.2
- 3.1,3.2,2.8,2.9
- 5.1-5.4

Section 6.1

Inner Product, Length, and Orthogonality

Orientation

- Almost solve the equation $A x=b$

Problem: In the real world, data is imperfect.

But due to measurement error, the measured x is not actually in $\operatorname{Span}\{u, v\}$. But you know, for theoretical reasons, it must lie on that plane.

What do you do?
The real value is probably the closest point, on the plane, to x.
New terms: Orthogonal projection ('closest point'), orthogonal vectors, angle.

The Dot Product

The dot product encodes the notion of angle between two vectors. We will use it to define orthogonality (i.e. when two vectors are perpendicular)
Definition
The dot product of two vectors x, y in \mathbf{R}^{n} is

$$
x \cdot y=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \cdot\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right) \stackrel{\text { def }}{=} x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}
$$

This is the same as $x^{\top} y$.
Example

$$
\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \cdot\left(\begin{array}{l}
4 \\
5 \\
6
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)\left(\begin{array}{l}
4 \\
5 \\
6
\end{array}\right)=1 \cdot 4+2 \cdot 5+3 \cdot 6=32 .
$$

Properties of the Dot Product

Many usual arithmetic rules hold, as long as you remember you can only dot two vectors together, and that the result is a scalar.

- $x \cdot y=y \cdot x$
- $(x+y) \cdot z=x \cdot z+y \cdot z$
- $(c x) \cdot y=c(x \cdot y)$

Dotting a vector with itself is special:

$$
\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \cdot\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}
$$

Hence:

- $x \cdot x \geq 0$
- $x \cdot x=0$ if and only if $x=0$.

Important: $x \cdot y=0$ does not imply $x=0$ or $y=0$. For example, $\binom{1}{0} \cdot\binom{0}{1}=0$.

The Dot Product and Length

Definition
The length or norm of a vector x in \mathbf{R}^{n} is

$$
\|x\|=\sqrt{x \cdot x}=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}
$$

Why is this a good definition? The Pythagorean theorem!

$$
\left\|\binom{3}{4}\right\|=\sqrt{3^{2}+4^{2}}=5
$$

Fact
If x is a vector and c is a scalar, then $\|c x\|=|c| \cdot\|x\|$.

$$
\left\|\binom{6}{8}\right\|=\left\|2\binom{3}{4}\right\|=2\left\|\binom{3}{4}\right\|=10
$$

The Dot Product and Distance

The following is just the length of the vector from x to y.
Definition
The distance between two points x, y in \mathbf{R}^{n} is

$$
\operatorname{dist}(x, y)=\|y-x\| .
$$

Example

Let $x=(1,2)$ and $y=(4,4)$. Then

$$
\operatorname{dist}(x, y)=\|y-x\|=\left\|\binom{3}{2}\right\|=\sqrt{3^{2}+2^{2}}=\sqrt{13} .
$$

Unit Vectors

Definition
A unit vector is a vector v with length $\|v\|=1$.

Example

The unit coordinate vectors are unit vectors:

$$
\left\|e_{1}\right\|=\left\|\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right\|=\sqrt{1^{2}+0^{2}+0^{2}}=1
$$

Definition

Let x be a nonzero vector in \mathbf{R}^{n}. The unit vector in the direction of x is the vector $\frac{x}{\|x\|}$.
Is this really a unit vector?

$$
\text { scalar }\left\|\frac{x}{\|x\|}\right\|=\frac{1}{\|x\|}\|x\|=1 \text {. }
$$

Unit Vectors

Example

Example

What is the unit vector in the direction of $x=\binom{3}{4}$?

$$
u=\frac{x}{\|x\|}=\frac{1}{\sqrt{3^{2}+4^{2}}}\binom{3}{4}=\frac{1}{5}\binom{3}{4} .
$$

Orthogonality

Definition
Two vectors x, y are orthogonal or perpendicular if $x \cdot y=0$.
Notation: Write it as $x \perp y$.
Why is this a good definition? The Pythagorean theorem / law of cosines!

$$
\begin{aligned}
\begin{array}{r}
x \text { and } y \text { are } \\
\text { perpendicular }
\end{array} & \Longleftrightarrow\|x\|^{2}+\|y\|^{2}=\|x-y\|^{2} \\
& \Longleftrightarrow x \cdot x+y \cdot y=(x-y) \cdot(x-y) \\
& \Longleftrightarrow x \cdot x+y \cdot y=x \cdot x+y \cdot y-2 x \cdot y \\
& \Longleftrightarrow x \cdot y=0
\end{aligned}
$$

Fact: $x \perp y \Longleftrightarrow\|x-y\|^{2}=\|x\|^{2}+\|y\|^{2}$ (Pythagorean Theorem)

Orthogonality

Example

Problem: Find all vectors orthogonal to $v=\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)$.
We have to find all vectors x such that $x \cdot v=0$. This means solving the equation

$$
0=x \cdot v=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right)=x_{1}+x_{2}-x_{3}
$$

The parametric form for the solution is $x_{1}=-x_{2}+x_{3}$, so the parametric vector form of the general solution is

$$
x=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=x_{2}\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)+x_{3}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
$$

For instance, $\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right) \perp\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)$ because $\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right) \cdot\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)=0$.

Orthogonality

Example

Problem: Find all vectors orthogonal to both $v=\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)$ and $w=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$.
Now we have to solve the system of two homogeneous equations

$$
\begin{aligned}
& 0=x \cdot v=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right)=x_{1}+x_{2}-x_{3} \\
& 0=x \cdot w=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=x_{1}+x_{2}+x_{3} .
\end{aligned}
$$

In matrix form:
The rows are v and $w \longrightarrow\left(\begin{array}{ccc}1 & 1 & -1 \\ 1 & 1 & 1\end{array}\right) \xrightarrow{\text { rref }} \rightarrow\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$.
The parametric vector form of the solution is

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=x_{2}\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right) .
$$

Orthogonality

Problem: Find all vectors orthogonal to $v_{1}, v_{2}, \ldots, v_{m}$ in \mathbf{R}^{n}.
This is the same as finding all vectors x such that

$$
0=v_{1}^{\top} x=v_{2}^{\top} x=\cdots=v_{m}^{\top} x
$$

$\begin{aligned} & \text { Putting the row vectors } v_{1}^{\top}, v_{2}^{\top}, \ldots, v_{m}^{T} \\ & \text { into a matrix, this is the same as finding } \\ & \text { all } x \text { such that }\end{aligned}\left(\begin{array}{c}-v_{1}^{\top}- \\ -v_{2}^{T}- \\ \vdots \\ -v_{m}^{\top}-\end{array}\right) x=\left(\begin{array}{c}v_{1} \cdot x \\ v_{2} \cdot x \\ \vdots \\ v_{m} \cdot x\end{array}\right)=0$.

The key observation

The set of all vectors orthogonal to some vectors $v_{1}, v_{2}, \ldots, v_{m}$ in \mathbf{R}^{n} is the null space of the $m \times n$ matrix:

$$
\left(\begin{array}{c}
-v_{1}^{T}- \\
-v_{2}^{T}- \\
\vdots \\
-v_{m}^{T}-
\end{array}\right)
$$

In particular, this set is a subspace!

Orthogonal Complements

Definition

Let W be a subspace of \mathbf{R}^{n}. Its orthogonal complement is

$$
W_{\uparrow}^{\perp}=\left\{v \text { in } \mathbf{R}^{n} \mid v \cdot w=0 \text { for all } w \text { in } W\right\} \quad \text { read " } W \text { perp". }
$$

Pictures:

The orthogonal complement of a line in \mathbf{R}^{2} is the perpendicular line.

The orthogonal complement of a line in \mathbf{R}^{3} is the perpendicular plane.

The orthogonal complement of a plane in \mathbf{R}^{3} is the perpendicular line.

Poll

Let W be a plane in \mathbf{R}^{4}. How would you describe W^{\perp} ?
A. The zero space $\{0\}$.
B. A line in \mathbf{R}^{4}.
C. A plane in \mathbf{R}^{4}.
D. A 3-dimensional space in \mathbf{R}^{4}.
E. All of \mathbf{R}^{4}.

Orthogonal Complements

Basic properties

Facts: Let W be a subspace of \mathbf{R}^{n}.

1. W^{\perp} is also a subspace of R^{n}
2. $\left(W^{\perp}\right)^{\perp}=W$
3. $\operatorname{dim} W+\operatorname{dim} W^{\perp}=n$
4. If $W=\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$, then

$$
\begin{aligned}
W^{\perp} & =\text { all vectors orthogonal to each } v_{1}, v_{2}, \ldots, v_{m} \\
& =\left\{x \text { in } \mathbf{R}^{n} \mid x \cdot v_{i}=0 \text { for all } i=1,2, \ldots, m\right\} \\
& =\operatorname{Nul}\left(\begin{array}{c}
-v_{1}^{T}- \\
-v_{2}^{T}- \\
\vdots \\
-v_{m}^{T}-
\end{array}\right)
\end{aligned}
$$

Property 4

$$
\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}^{\perp}=\mathrm{Nul}\left(\begin{array}{c}
-v_{1}^{T}- \\
-v_{2}^{T}- \\
\vdots \\
-v_{m}^{T}-
\end{array}\right)
$$

Orthogonal Complements

Definition

The row space of an $m \times n$ matrix A is the span of the rows of A. It is denoted Row A. Equivalently, it is the column span of A^{T} :

$$
\operatorname{Row} A=\operatorname{Col} A^{T} .
$$

It is a subspace of \mathbf{R}^{n}.
We showed before that if A has rows $v_{1}^{T}, v_{2}^{T}, \ldots, v_{m}^{T}$, then

$$
\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}^{\perp}=\operatorname{Nul} A
$$

Hence we have shown: $(\operatorname{Row} A)^{\perp}=\operatorname{Nul} A$.

Other Facts:

- $(\operatorname{Col} A)^{\perp}=\operatorname{Nul} A^{T}$. (Replacing A by A^{T}, and remembering Row $A^{T}=\operatorname{Col} A$)
- $(\operatorname{Nul} A)^{\perp}=\operatorname{Row} A$ and $\operatorname{Col} A=\left(\operatorname{Nul} A^{T}\right)^{\perp}$.
(Using property 2 and taking the orthogonal complements of both sides)

Reference sheet

Orthogonal Complements of Most of the Subspaces We've Seen

For any vectors $v_{1}, v_{2}, \ldots, v_{m}$:

$$
\left(\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}\right)^{\perp}=\operatorname{Nul}\left(\begin{array}{c}
-v_{1}^{\top}- \\
-v_{2}^{T}- \\
\vdots \\
-v_{m}^{T}-
\end{array}\right)
$$

For any matrix A :

$$
\operatorname{Row} A=\operatorname{Col} A^{T}
$$

thus

$$
\left.\begin{array}{rl}
(\operatorname{Row} A)^{\perp} & =\operatorname{Nul} A
\end{array} \quad \text { Row } A=(\operatorname{Nul} A)^{\perp}\right)
$$

Extra: Practice proving a set is subspace

Example

Let's check W^{\perp} is a subspace.

- Is 0 in W^{\perp} ?

Yes: $0 \cdot w=0$ for any w in W.

- Closed under addition: Suppose x, y are in W^{\perp}. So $x \cdot w=0$ and $y \cdot w=0$ for all w in W.
Then $(x+y) \cdot w=x \cdot w+y \cdot w=0+0=0$ for all w in W. So $x+y$ is also in W^{\perp}.
- Closed under scalar product: Suppose x is in W^{\perp}. So $x \cdot w=0$ for all w in W.
If c is a scalar, then $(c x) \cdot w=c(x \cdot 0)=c(0)=0$ for any w in W. So $c x$ is in W^{\perp}.

